【題目】如圖,直線l:y=﹣x,點A1的坐標(biāo)為(﹣1,0),過點A1作x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸正半軸于點A2;再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸正半軸于點A3;…,按此作法進行下去點A2020的坐標(biāo)為_____.
【答案】(﹣22019,0).
【解析】
根據(jù)題意求出B1點的坐標(biāo),進而找到A2點的坐標(biāo),逐個解答便可發(fā)現(xiàn)規(guī)律,進而求得點A2020的坐標(biāo).
已知點A1坐標(biāo)為(﹣1,0),且點B1在直線y=﹣x上,可知B1點坐標(biāo)為(﹣1,),
由題意可知OB1==2,故A2點坐標(biāo)為(﹣2,0),
同理可求的B2點坐標(biāo)為(﹣2,2),故A3點坐標(biāo)為(﹣4,0),
按照這種方法逐個求解便可發(fā)現(xiàn)規(guī)律,A2020點坐標(biāo)為(﹣22019,0),
故答案為(﹣22019,0).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家教育部提出“每天鍛煉一小時,健康工作五十年,幸福生活一輩子”.萬州區(qū)某中學(xué)對九年級部分學(xué)生進行問卷調(diào)查“你最喜歡的鍛煉項目是什么?”,規(guī)定從“打球”,“跑步”,“游泳”,“跳繩”,“其他”五個選項中選擇自己最喜歡的項目,且只能選擇一個項目,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.
最喜歡的鍛煉項目 | 人數(shù) |
打球 | 120 |
跑步 | |
游泳 | |
跳繩 | 30 |
其他 |
(1)這次問卷調(diào)查的學(xué)生總?cè)藬?shù)為 ,人數(shù) ;
(2)扇形統(tǒng)計圖中, ,“其他”對應(yīng)的扇形的圓心角的度數(shù)為 度;
(3)若該年級有1200名學(xué)生,估計喜歡“跳繩”項目的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國古代算書《算法統(tǒng)宗》中有這樣一道題:甲趕群羊逐草茂,乙拽肥羊隨其后,戲問甲及一百否?甲云所說無差謬,若得這般一群湊,再添半群小半(注:四分之一的意思)群,得你一只來方湊,玄機奧妙誰參透?大意是說:牧羊人趕著一群羊去尋找草長得茂盛的地方放牧,有一個過路人牽著1只肥羊從后面跟了上來,他對牧羊人說你趕的這群羊大概有100只吧?牧羊人答道:如果這一群羊加上1倍,再加上原來羊群的一半,又加上原來這群羊的四分之一,連你牽著的這只肥羊也算進去,才剛好滿100只你知道牧羊人放牧的這群羊一共有多少只嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與x軸交于A、B兩點,與y軸交于C點,連接、,已知點A、C的坐標(biāo)為、.
(1)求拋物線的表達式;
(2)點P是線段下方拋物線上的一動點,如果在x軸上存在點Q,使得以點B、C、P、Q為頂點的四邊形為平行四邊形,求點Q的坐標(biāo);
(3)如圖2,若點M是內(nèi)一動點,且滿足,過點M作,垂足為N,設(shè)的內(nèi)心為I,試求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體地攤經(jīng)銷一批小商品,每件商品的成本為8元.據(jù)市場分析,銷售單價定為10元時,每天能售出200件;現(xiàn)采用提高商品售價,減少銷售量的辦法增加利潤,若銷售單價每漲1元,每天的銷售量就減少20件,設(shè)銷售單價為每件x元,銷售量為y件.
(1)寫出y與x函數(shù)關(guān)系式.
(2)若想每天的銷售利潤恰為640元,同時又要使顧客得到實惠,這種小商品每件售價應(yīng)定為多少元?
(3)這種小商品每件售價應(yīng)定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實行垃圾資源化利用,是社會文明水平的一個重要體現(xiàn).某環(huán)保公司研發(fā)的甲、乙兩種智能設(shè)備可利用最新技術(shù)將干垃圾變身為燃料棒.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備,若干已知購買甲型智能設(shè)備花費360萬元,購買乙型智能設(shè)備花費480萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價和為140萬元.
(1)求甲乙兩種智能設(shè)備單價;
(2)垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的40%,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多10元,調(diào)查發(fā)現(xiàn):若燃料棒售價為每噸200元,平均每天可售出350噸,而當(dāng)銷售價每降低1元,平均每天可多售出5噸,但售價在每噸200元基礎(chǔ)上降價幅度不超過7%,
①垃圾處理廠想使這種燃料棒的銷售利潤平均每天達到36080元,求每噸燃料棒售價應(yīng)為多少元?
②每噸燃料棒售價應(yīng)為多少元時,這種燃料棒平均每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:
(3)拓展與運用:
正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CG交AD于點H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為2的等邊三角形,點D與點B分別位于直線AC的兩側(cè),且AD=AC,連結(jié)BD、CD,BD交直線AC于點E.
(1)當(dāng)∠CAD=90°時,求線段AE的長.
(2)過點A作AH⊥CD,垂足為點H,直線AH交BD于點F,
①當(dāng)∠CAD<120°時,設(shè)AE=x,y=(其中S△BCE表示△BCE的面積,S△AEF表示△AEF的面積),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
②當(dāng)時,請直接寫出線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,對稱軸x=,且經(jīng)過點(2,0),下列說法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是拋物線上的兩點,則y1>y2,其中說法正確的序號是_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com