【題目】“有兩角及其中一角的平分線對應相等的兩個三角形全等”是_____命題.(填“真”或“假”)
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且DE=2.將△ADE沿AE對折得到△AFE,延長EF交邊BC于點G,則BG=___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩名同學分別進行6次射擊訓練,訓練成績(單位:環(huán))如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
對他們的訓練成績作如下分析,其中說法正確的是( 。
A. 他們訓練成績的平均數相同 B. 他們訓練成績的中位數不同
C. 他們訓練成績的眾數不同 D. 他們訓練成績的方差不同
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著龍蝦節(jié)的火熱舉辦,某龍蝦養(yǎng)殖大戶為了發(fā)揮技術優(yōu)勢,一次性收購了10000kg小龍蝦,計劃養(yǎng)殖一段時間后再出售.已知每天養(yǎng)殖龍蝦的成本相同,放養(yǎng)10天的總成本為166000,放養(yǎng)30天的總成本為178000元.設這批小龍蝦放養(yǎng)t天后的質量為akg,銷售單價為y元/kg,根據往年的行情預測,a與t的函數關系為a= ,y與t的函數關系如圖所示.
(1)設每天的養(yǎng)殖成本為m元,收購成本為n元,求m與n的值;
(2)求y與t的函數關系式;
(3)如果將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤為W元.問該龍蝦養(yǎng)殖大戶將這批小龍蝦放養(yǎng)多少天后一次性出售所得利潤最大?最大利潤是多少?
(總成本=放養(yǎng)總費用+收購成本;利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊△ABC中,點D在BC邊上(不與點B、點C重合),點E在AC的延長線上,DE=DA(如圖1).
(1)求證:∠BAD=∠EDC;
(2)點E關于直線BC的對稱點為M,連接DM,AM.
①依題意將圖2補全;
②若點D在BC邊上運動,DA與AM始終相等嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖, 在中, ,,,P是邊BC上的一動點,過點P作PE⊥AB,垂足為E,延長PE至點Q,使PQ=PC, 聯(lián)結交邊AB于點.
(1)求AD的長;
(2)設,的面積為y, 求y關于x的函數解析式,并寫出定義域;
(3)過點C作, 垂足為F, 聯(lián)結PF、QF, 試探索當點P在邊BC的什么位置時,為等邊三角形?請指出點P的位置并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數軸上線段的長度可以用線段端點表示的數進行減法運算得到,例如:如圖①,若點在數軸上分別對應的數為,則的長度可以表示為.
請你用以上知識解決問題:
如圖②,一個點從數軸上的原點開始,先向左移動個單位長度到達點,再向右移動個單位長度到達點,然后向右移動個單位長度到達點.
請你在圖②的數軸上表示出三點的位置.
若點以每秒個單位長度的速度向左移動,同時,點和點分別以每秒個單位長度和個單位長度的速度向右移動,設移動時間為秒.
①當時,求和的長度;
②試探究:在移動過程中,的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 以下沿AB折疊的方法中,不一定能判定紙帶兩條邊a,b互相平行的是( 。
A.如圖①,展開后測得∠1=∠2B.如圖②,展開后測得∠1=∠2,且∠3=∠4
C.如圖③,展開后測得∠1=∠2,且∠3=∠4D.如圖④,展開后測得∠1+∠2=180°
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com