.(13分)已知拋物線y=ax 2+bx+c經(jīng)過O(0,0),A(4,0),B(3,)三點(diǎn),連接AB,過點(diǎn)B作BC∥軸交拋物線于點(diǎn)C.動(dòng)點(diǎn)E、F分別從O、A兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)E沿線段OA以每秒1個(gè)單位長(zhǎng)度的速度向A點(diǎn)運(yùn)動(dòng),點(diǎn)F沿折線A→B→C以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)求拋物線的解析式;
(2)記△EFA的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求S的最大值,指出此時(shí)△EFA的形狀;
(3)是否存在這樣的t值,使△EFA是直角三角形?若存在,求出此時(shí)E、F兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
見解析
【解析】
(1)根據(jù)題意得
解得:
------------4分
(2)過點(diǎn)B作BM⊥x軸于M,
則BM=,OM=3,∵OM=4,∴AM=1
AB=
∵∴∠BAM=60°
當(dāng)0<t《2時(shí),AF=t,過點(diǎn)F作FH⊥x軸,
∵FN=Afsin60°=,
當(dāng)2<t《4時(shí),如圖,
當(dāng)0<t《2時(shí),當(dāng)時(shí),
當(dāng)2<t《4時(shí),s<
∴當(dāng)x=2時(shí),
,此時(shí)AE=AF=2又∵∠EAF=60°. ∴△AEF為等邊三角形. -----------10分
(3)當(dāng)0≤t≤2時(shí),
若∠EFA=90°,此時(shí)∠FEA=30°, ∴EA=2AF,4-t=2t, ∴.此時(shí)E
當(dāng)∠FEA=90°時(shí),此時(shí)∠EFA=30°, ∴2EA=AF,∴t=2(4-t)
∴>2, ∴這種情況不存在。
當(dāng)2<t《4時(shí),有t-2+t=3
∴t=2.5
E(2.5,0), F(2.5,). ------------13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知拋物線y=ax 2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線的解析式;
(2)若點(diǎn)D(m,m+1)在第一象限的拋物線上, 求點(diǎn)D關(guān)于直線BC對(duì)稱的點(diǎn)的坐標(biāo);
(3)在(2)的條件下,連結(jié)BD,若點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省祁陽(yáng)縣浯溪鎮(zhèn)二中九年級(jí)下學(xué)期第一次月考考試數(shù)學(xué)卷 題型:單選題
.(13分)已知拋物線y=ax 2+bx+c經(jīng)過O(0,0),A(4,0),B(3,)三點(diǎn),連接AB,過點(diǎn)B作BC∥軸交拋物線于點(diǎn)C.動(dòng)點(diǎn)E、F分別從O、A兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)E沿線段OA以每秒1個(gè)單位長(zhǎng)度的速度向A點(diǎn)運(yùn)動(dòng),點(diǎn)F沿折線A→B→C以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng).設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為t(秒).
(1)求拋物線的解析式;
(2)記△EFA的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求S的最大值,指出此時(shí)△EFA的形狀;
(3)是否存在這樣的t值,使△EFA是直角三角形?若存在,求出此時(shí)E、F兩點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆北京師大附中九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
已知拋物線y=ax+bx+c與軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個(gè)實(shí)數(shù)根,與軸交于點(diǎn)(0,3),
【小題1】(1)求拋物線的解析式;
【小題2】(2)在此拋物線上求點(diǎn),使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年北京師大附中九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
已知拋物線y=ax+bx+c與軸交于兩點(diǎn),若兩點(diǎn)的橫坐標(biāo)分別是一元二次方程的兩個(gè)實(shí)數(shù)根,與軸交于點(diǎn)(0,3),
1.(1)求拋物線的解析式;
2.(2)在此拋物線上求點(diǎn),使.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com