下列運(yùn)算不正確的是( )
A. a2•a=a3 B. (a3)2=a6 C. (2a2)2=4a4 D. a2÷a2=a
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四邊形CDEF=S△ABF,其中正確的結(jié)論有( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若點(diǎn)P是BF的中點(diǎn),連接PC,PE.
特殊發(fā)現(xiàn):如圖1,若點(diǎn)E,F分別落在邊AB,AC上,則結(jié)論:PC=PE成立(不要求證明).
問題探究:把圖1中的△AEF繞著點(diǎn)A順時(shí)針旋轉(zhuǎn).
(1)如圖2,若點(diǎn)E落在邊CA的延長(zhǎng)線上,則上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(2)如圖3,若點(diǎn)F落在邊AB上,則上述結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)記,當(dāng)k為何值時(shí),△CPE總是等邊三角形?(請(qǐng)直接寫出k的值,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
理解:數(shù)學(xué)興趣小組在探究如何求tan15°的值,經(jīng)過思考、討論、交流,得到以下思路:
思路一 如圖1,在Rt△ABC中,∠C=90°,∠ABC=30°,延長(zhǎng)CB至點(diǎn)D,使BD=BA,連接AD.設(shè)AC=1,則BD=BA=2,BC=.tanD=tan15°===2﹣.
思路二 利用科普書上的和(差)角正切公式:tan(α±β)=.假設(shè)α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.
思路三 在頂角為30°的等腰三角形中,作腰上的高也可以…
思路四 …
請(qǐng)解決下列問題(上述思路僅供參考).
(1)類比:求出tan75°的值;
(2)應(yīng)用:如圖2,某電視塔建在一座小山上,山高BC為30米,在地平面上有一點(diǎn)A,測(cè)得A,C兩點(diǎn)間距離為60米,從A測(cè)得電視塔的視角(∠CAD)為45°,求這座電視塔CD的高度;
(3)拓展:如圖3,直線y=x﹣1與雙曲線y=交于A,B兩點(diǎn),與y軸交于點(diǎn)C,將直線AB繞點(diǎn)C旋轉(zhuǎn)45°后,是否仍與雙曲線相交?若能,求出交點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,如果將△ABC先向右平移4個(gè)單位長(zhǎng)度,在向下平移1個(gè)單位長(zhǎng)度,得到△A1B1C1,那么點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為( )
A. (4,3) B. (2,4) C. (3,1) D. (2,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD中,F(xiàn)是DC上一點(diǎn),BF⊥AC,垂足為E,=,△CEF的面積為S1,△AEB的面積為S2,則的值等于 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com