【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5小時內其血液中酒精含量(毫克/百毫升)與時間(時)成正比例;1.5小時后(包括1.5小時)成反比例.根據(jù)圖中提供的信息,解答下列問題:

(1)求一般成人喝半斤低度白酒后, 之間的兩個函數(shù)關系式及相應的自變量 取值范圍;

(2)依據(jù)人的生理數(shù)據(jù)顯示,當≥80時,肝部正被嚴重損傷,請問喝半斤低度白酒后,肝部被嚴重損傷持續(xù)多少小時?

【答案】(1) ;(22.0125(或(小時)

【解析】分析: (1)首先根據(jù)題意,1.5小時內其血液中酒精含量(毫克/百毫升)與時間(時)成正比例1.5小時后(包括1.5小時)成反比例,yt的函數(shù)關系式為a為常數(shù)),將數(shù)據(jù)代入用待定系數(shù)法可得反比例函數(shù)的關系式;

(2)把y=80代入兩個函數(shù)求得x值相減即可求得肝部被嚴重損傷持續(xù)時間.

詳解:

1由題意,得

時,

設函數(shù)關系式為: ,

,解得,

,

時,

設函數(shù)關系式為:

,解得 ,

綜上所述:

2)當時, 解得(或

時, 解得(或

由圖象可知,肝部被嚴重損傷持續(xù)時間(或

(小時)

點睛: 本題考查了反比例函數(shù)的應用,現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用待定系數(shù)法求出它們的關系式.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,延長弦BD到點C,使DC=BD,連接AC,過點D作DE⊥AC,垂足為E.

(1)判斷直線DE與⊙O的位置關系,并證明你的結論;
(2)若⊙O的半徑為6,∠BAC=60°,延長ED交AB延長線于點F,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)、、、、…、的每個數(shù)字前添上“+”“-”,使得算出的結果是一個最小的非負數(shù),請寫出符合條件的式子:________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將下列各數(shù)填入相應的集合中:

—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,

有理數(shù)集合:{ };

無理數(shù)集合:{ };

整數(shù)集合:{ };

分數(shù)集合:{ }

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,點E、F分別在AD、BC上,且ED=BF,EF與AC相交于點O,求證:OA=OC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:一粒米微不足道,平時在飯桌上總會毫不經(jīng)意地掉下幾粒,甚至有些挑食的同學把整碗米飯倒掉.針對這種浪費糧食現(xiàn)象,老師組織同學們進行了實際測算,稱得粒大米約重克.

嘗試解決:

粒米重約多少克?

按我國現(xiàn)有人口億,每年天,每人每天三餐計算,若每人每餐節(jié)約粒大米,一年大約能節(jié)約大米多少千克?(結果用科學記數(shù)法表示)

假設我們把一年節(jié)約的大米賣成錢,按每千克元計算,可賣得人民幣多少元?(結果用科學記數(shù)法表示,保留到

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校初二年級數(shù)學考試,(滿分為100分,該班學生成績均不低于50分)作了統(tǒng)計分析,繪制成如圖頻數(shù)分布直方圖和頻數(shù)、頻率分布表,請你根據(jù)圖表提供的信息,解答下列問題:

分組

49.5~59.5

59.5~69.5

69.5~79.5

79.5~89.5

89.5~100.5

合計

頻數(shù)

2

a

20

16

4

50

頻率

0.04

0.16

0.40

0.32

b

1

(1)頻數(shù)、頻率分布表中a=  ,b=  ;(答案直接填在題中橫線上)

(2)補全頻數(shù)分布直方圖;

(3)若該校八年級共有600名學生,且各個班級學生成績分布基本相同,請估計該校八年級上學期期末考試成績低于70分的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A、C分別在的正半軸上,點B的坐標為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點D、E,并且滿足OD= BE.點M是線段DE上的一個動點.

(1)求b的值;

(2)連結OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點M的坐標;

(3)設點N是軸上方平面內的一點,以O、D、M、N為頂點的四邊形是菱形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在平面直角坐標系中,Rt△ABC的斜邊BC在x軸上,直角頂點A在y軸的正半軸上,A(0,2),B(﹣1,0).

(1)求點C的坐標;
(2)求過A、B、C三點的拋物線的解析式和對稱軸;
(3)設點P(m,n)是拋物線在第一象限部分上的點,△PAC的面積為S,求S關于m的函數(shù)關系式,并求使S最大時點P的坐標;
(4)在拋物線對稱軸上,是否存在這樣的點M,使得△MPC(P為上述(3)問中使S最大時的點)為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案