如圖,在“世界杯”足球比賽中,甲帶球向對方球門PQ進攻,當他帶球沖到A點時,同樣乙已經(jīng)助攻沖到B點.有兩種射門方式:第一種是甲直接射門;第二種是甲將球傳給乙,由乙射門.僅從射門角度考慮,應選擇________種射門方式.
第二
本題實際是求∠A和∠B度數(shù)的大;可設AP與⊙O的交點為C,連接QC,由圓周角定理可得∠PCQ=∠B;由于∠PCQ是△ACQ的外角,顯然∠PCQ即∠B的度數(shù)要大于∠A;因此從射門角度考慮,在B點射門時,射門的角度更大,更有利于進球.
解:設AP與圓的交點是C,連接CQ;
則∠PCQ>∠A;

由圓周角定理知:∠PCQ=∠B;
所以∠B>∠A;
因此選擇第二種射門方式更好
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

小紅同學要用紙板制作一個高4cm,底面周長是6π cm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是                             ( ▲。
A.12πB.15πcm2C.18πcm2D.24πcm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖是一條水平鋪設的直徑為2米的管道橫截面,其水面寬1.6米。則管道中水最深        米.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,邊長為1的小正方形構成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于        

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知:如圖,⊙O1與坐標軸交于A(1,0)、B(5,0)兩點,點O1的縱坐標為.求⊙O1的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知⊙O和三點P、Q、R,⊙O的半徑為3,OP=2,OQ=3,OR=4,經(jīng)過這三點中的一點任意作直線總是與⊙O相交,這個點是  (     )
A.PB.QC.RD.P或Q

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

以點O為圓心,線段a為半徑作圓,可以作(  )
A.無數(shù)個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題8分)如圖,PA、PB是⊙O的切線,CD切⊙O于點E,△PCD的周長為12,
APB=60°.
求:(1)PA的長;(2)∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

⊙O為△ABC的內切圓,且AB=10,BC=11,AC=7,MN切⊙O于點G,且分別交AB, BC于點M,N,則△BMN的周長是(    )
A.10     B.11    C.12D.14

查看答案和解析>>

同步練習冊答案