【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,-3).
(1)求這個二次函數(shù)的函數(shù)解析式;
(2)當(dāng)x取何值時,函數(shù)y的值隨著x的增大而增大;
(3)當(dāng)x取何值時,函數(shù)的值為0.
【答案】(1);(2)x>1;(3)當(dāng)x=-1或x=3時.
【解析】試題分析:
(1)把點(diǎn)(0,-3)代入: 解得的值即可求得所求函數(shù)的解析式;
(2)由(1)所求函數(shù)解析是可知,該函數(shù)圖象開口向上,對稱軸為直線,由此可得當(dāng)時,函數(shù)是指隨的增大而增大;
(3)在(1)中所求函數(shù)解析式中,令,可得一元二次方程,解方程即可求得對應(yīng)的的值.
試題解析:
(1)將點(diǎn)(0,-3)代入,解得, ,
∴二次函數(shù)的解析式為: ;
(2)∵在二次函數(shù)中, ,
∴該是圖象的開口向上,對稱軸為,
∴當(dāng)時,函數(shù)y的值隨著x的增大而增大;
(3)在二次函數(shù)中,當(dāng)y=0時,有,
解得: 或,
∴當(dāng)或時,函數(shù)的值為0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖平行四邊形 ABCD 中,∠ABC=60°,點(diǎn) E、F 分別在 CD、BC 的延長線上,AE∥BD,EF⊥BF,垂足為點(diǎn) F,DF=2.
(1)求證:D 是 EC 中點(diǎn);
(2)求 FC 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一批單價為20元的商品,若每件按30元的價格銷售時,每天能賣出60件;若每件按50元的價格銷售時,每天能賣出20件,假定每天銷售件數(shù)y(件)與銷售價格x(元/件)滿足y=kx+b.
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不考慮其他因素的情況下,每件商品銷售價格定為多少元時才能使每天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動,運(yùn)動到點(diǎn)A即停止;同時,點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動,運(yùn)動到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動的時間為ts.
當(dāng)t為何值時,四邊形ABQP是矩形;
當(dāng)t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,點(diǎn)O是AC邊上一點(diǎn),連接BO交AD于F,OE⊥OB交BC邊于點(diǎn)E.
(1)求證:△ABF∽△COE;
(2)當(dāng)O為AC邊中點(diǎn), 時,如圖2,求的值;
(3)當(dāng)O為AC邊中點(diǎn), 時,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一批日用品,若按每件5元的價格銷售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件,假定每月銷售件數(shù)(件)與價格(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求:y與x之間的函數(shù)關(guān)系式;
(2)這批日用品購進(jìn)時進(jìn)價為4元,則當(dāng)銷售價格定為多少時,才能使每月的潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC,BD于點(diǎn)E,P,連接OE,∠ADC=60°,,則下列結(jié)論:①∠CAD=30°②③④,正確的個數(shù)是______________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個內(nèi)角為60°的菱形 ABCD中,AB=2,點(diǎn)P以每秒1cm的速度從點(diǎn)A出發(fā),沿AD→DC的路徑運(yùn)動,到點(diǎn)C停止,過點(diǎn)P 作PQ⊥BD,PQ 與邊AD(或邊CD)交于點(diǎn)Q,△ABQ的面積y(cm2)與點(diǎn)P 的運(yùn)動時間x(秒)的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,垂足為D,點(diǎn)E在AB上,EF⊥BC,垂足為F.
(1)AD與EF平行嗎?為什么?
(2)如果∠1=∠2,且∠3=115°,求∠BAC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com