【題目】如圖(1)所示,AOB、COD都是直角.

1)試猜想AODCOB在數(shù)量上是相等,互余,還是互補(bǔ)的關(guān)系.請(qǐng)你用推理的方法說(shuō)明你的猜想是合理的.

2)當(dāng)COD繞著點(diǎn)O旋轉(zhuǎn)到圖(2)所示位置時(shí),你在(1)中的猜想還成立嗎?請(qǐng)你證明你的結(jié)論.

【答案】1AODCOB互補(bǔ);2成立,證明見(jiàn)解析

【解析】

試題分析:1)根據(jù)直角的定義可得AOB=COD=90°,然后用AODCOB表示出BOD,列出方程整理即可得解;

2)根據(jù)周角等于360°列式整理即可得解.

解:(1AODCOB互補(bǔ).

理由如下:∵∠AOB、COD都是直角,

∴∠AOB=COD=90°,

∴∠BOD=AODAOB=AOD﹣90°

BOD=CODCOB=90°COB,

∴∠AOD﹣90°=90°﹣COB,

∴∠AOD+COB=180°,

∴∠AODCOB互補(bǔ);

2)成立.

理由如下:∵∠AOB、COD都是直角,

∴∠AOB=COD=90°

∵∠AOB+BOC+COD+AOD=360°,

∴∠AOD+COB=180°,

∴∠AODCOB互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長(zhǎng)線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC④AC=3BF,其中正確的結(jié)論共有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△AOB中,兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,將△AOB繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到△A′O′B.若反比例函數(shù) 的圖像恰好經(jīng)過(guò)斜邊A′B的中點(diǎn)C,SABO=4,tan∠BAO=2,則k的值為(
A.3
B.4
C.6
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一個(gè)老太太提著一個(gè)籃子去賣(mài)雞蛋,第一個(gè)人買(mǎi)走了她的雞蛋的一半又半個(gè);第二個(gè)人買(mǎi)走了剩下的一半又半個(gè);第三人買(mǎi)走了前兩個(gè)人剩下的一半又半個(gè),正好賣(mài)完全部雞蛋,問(wèn)老太太一共賣(mài)了多少個(gè)雞蛋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,,點(diǎn)從點(diǎn)出發(fā),沿向點(diǎn)勻速運(yùn)動(dòng),速度為每秒1個(gè)單位,過(guò)點(diǎn),交對(duì)角線于點(diǎn).點(diǎn)從點(diǎn)出發(fā),沿對(duì)角線向點(diǎn)勻速運(yùn)動(dòng),速度為每秒1個(gè)單位. 、兩點(diǎn)同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為().

(1)當(dāng)時(shí),求出的值;

(2)連接,當(dāng)時(shí),求出的值;

(3)試探究:當(dāng)為何值時(shí),是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,將邊長(zhǎng)為2的正方形OABC如圖①放置,O為原點(diǎn). (Ⅰ)若將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°時(shí),如圖②,求點(diǎn)A的坐標(biāo);
(Ⅱ)如圖③,若將圖①中的正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)75°時(shí),求點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在網(wǎng)格中建立平面直角坐標(biāo)系,每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,四邊形ABCD的各頂點(diǎn)均在網(wǎng)格點(diǎn)上.

(1)將四邊形ABCD平移,使得D點(diǎn)平移到D1(3,4),畫(huà)出平移后的四邊形A1B1C1D1;

(2)畫(huà)出四邊形ABCD繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的四邊形A2B2C2D2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面內(nèi)直角坐標(biāo)系中,直線l:y= x+1交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)A1 , A2 , A3 , …在x軸上,點(diǎn)B1、B2、B3 , …在直線l上.若△OB1A1 , △A1B2A2 , △A2B3A3 , …均為等邊三角形,則OAn的長(zhǎng)是( )

A.2n
B.(2n+1)
C.(2n﹣1﹣1)
D.(2n﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,ABBC,DAC上一點(diǎn),AEBD,交BD的延長(zhǎng)線于E,CFBDF.

(1)求證:CFBE;

(2)BD=2AE,求證:∠EADABE.

查看答案和解析>>

同步練習(xí)冊(cè)答案