在Rt△ABC,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,則sinA=   
【答案】分析:首先證△ACD∽△CBD,然后根據(jù)相似三角形的對應(yīng)邊成比例求出CD的長,再根據(jù)勾股定理求出AC,從而求出sinA.
解答:解:Rt△ACB中,∠ACB=90°,CD⊥AB;
∴∠ACD=∠B=90°-∠A;
又∵∠ADC=∠CDB=90°,
∴△ACD∽△CBD;
∴CD2=AD•BD=4,即CD=2;
Rt△ADC中,
AC===,
∴sinA===
故答案為:
點(diǎn)評:此題考查的知識點(diǎn)是解直角三角形,關(guān)鍵是先運(yùn)用相似三角形求出CD,再運(yùn)用勾股定理求出AC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

9、在Rt△ABC中,斜邊AB=2,則AB2+AC2+BC2等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,在Rt△ABC中,∠ACB=90°,D、E是邊AB上兩點(diǎn),且CE所在直線垂直平分線段AD,CD平分∠BCE,AC=5cm,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,若cosA=
12
,那么sinA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,如果b:a=1:
2
,那么cosB=
 
,sinA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,a=10,S△ABC=
50
3
3
,則∠A=
 
度.

查看答案和解析>>

同步練習(xí)冊答案