(2002•曲靖)閱讀下面的題目及分析過(guò)程,并按要求進(jìn)行證明.
已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE.
求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線段,它們不在同一個(gè)三角形中,且它們分別所在的兩個(gè)三角形也不全等.因此,要證AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形.
現(xiàn)給出如下三種添加輔助線的方法,請(qǐng)任意選擇其中一種,對(duì)原題進(jìn)行證明.


【答案】分析:證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線段,它們不在同一個(gè)三角形中,且它們分別所在的兩個(gè)三角形也不全等.因此,要證AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形.
解答:證明:方法一:作BF⊥DE于點(diǎn)F,CG⊥DE于點(diǎn)G.
∴∠F=∠CGE=90°.
又∵∠BEF=∠CEG,BE=CE,
∴△BFE≌△CGE.
∴BF=CG.
在△ABF和△DCG中,∵∠F=∠DGC=90°,∠BAE=∠CDE,BF=CG,
∴△ABF≌△DCG.
∴AB=CD.

方法二:作CF∥AB,交DE的延長(zhǎng)線于點(diǎn)F.
∴∠F=∠BAE.
又∵∠ABE=∠D,
∴∠F=∠D.
∴CF=CD.
∵∠F=∠BAE,∠AEB=∠FEC,BE=CE,
∴△ABE≌△FCE.
∴AB=CF.
∴AB=CD.

方法三:延長(zhǎng)DE至點(diǎn)F,使EF=DE.
又∵BE=CE,∠BEF=∠CED,
∴△BEF≌△CED.
∴BF=CD,∠D=∠F.
又∵∠BAE=∠D,
∴∠BAE=∠F.
∴AB=BF.
∴AB=CD.
點(diǎn)評(píng):主要考查輔助線的添加及全等三角形的判定方法的掌握,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年江蘇省無(wú)錫市宜興市初三數(shù)學(xué)適應(yīng)性練習(xí)(解析版) 題型:選擇題

(2002•曲靖)下列關(guān)于拋物線y=x2+2x+1的說(shuō)法中,正確的是( )
A.開(kāi)口向下
B.對(duì)稱軸方程為x=1
C.與x軸有兩個(gè)交點(diǎn)
D.頂點(diǎn)坐標(biāo)為(-1,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•宜昌)閱讀下題的解答過(guò)程,請(qǐng)判斷是否有錯(cuò),若有錯(cuò)誤請(qǐng)你在其右邊寫出正確的解答.
已知:m是關(guān)于x的方程mx2-2x+m=0的一個(gè)根,求m的值.
解:把x=m代入原方程,化簡(jiǎn)得m3=m,兩邊同除以m,得m2=1,
∴m=1,把m=1代入原方程檢驗(yàn)可知:m=1符合題意.
答:m的值是1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(06)(解析版) 題型:解答題

(2002•曲靖)閱讀下面的題目及分析過(guò)程,并按要求進(jìn)行證明.
已知:如圖,E是BC的中點(diǎn),點(diǎn)A在DE上,且∠BAE=∠CDE.
求證:AB=CD.
分析:證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線段,它們不在同一個(gè)三角形中,且它們分別所在的兩個(gè)三角形也不全等.因此,要證AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形.
現(xiàn)給出如下三種添加輔助線的方法,請(qǐng)任意選擇其中一種,對(duì)原題進(jìn)行證明.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2002年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2002•宜昌)閱讀下題的解答過(guò)程,請(qǐng)判斷是否有錯(cuò),若有錯(cuò)誤請(qǐng)你在其右邊寫出正確的解答.
已知:m是關(guān)于x的方程mx2-2x+m=0的一個(gè)根,求m的值.
解:把x=m代入原方程,化簡(jiǎn)得m3=m,兩邊同除以m,得m2=1,
∴m=1,把m=1代入原方程檢驗(yàn)可知:m=1符合題意.
答:m的值是1.

查看答案和解析>>

同步練習(xí)冊(cè)答案