【題目】如圖,AB⊙O的直徑,PD⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD

1)求∠D的度數(shù);

2)若CD=2,求BD的長.

【答案】145°;(2

【解析】

試題(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;

2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.

試題解析:(1∵OA=OC,

∴∠A=∠ACO,

∴∠COD=∠A+∠ACO=2∠A,

∵∠D=2∠A,

∴∠D=∠COD

∵PD⊙OC,

∴∠OCD=90°

∴∠D=∠COD=45°;

2∵∠D=∠CODCD=2,

∴OC=OB=CD=2,

Rt△OCD中,由勾股定理得:22+22=2+BD2,

解得:BD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點EBC的中點,連接DE,過點AAGEDDE于點F,交CD于點G

1)證明:△ADG≌△DCE;(2)連接BF,證明:ABFB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,于點,于點,邊的中點,連結(jié),則下列結(jié)論:①為等邊三角形④若,則,則正確結(jié)論是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過兩點A(﹣3,0),B0,3),且其對稱軸為直線x=﹣1

1)求此拋物線的解析式.

2)若點Q是對稱軸上一動點,當(dāng)OQ+BQ最小時,求點Q的坐標(biāo).

3)若點P是拋物線上點A與點B之間的動點(不包括點A,點B),求PAB面積的最大值,并求出此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一元二次方程中,若系數(shù)可在0,1,23中取值,則其中有實數(shù)解的方程的個數(shù)是___ 個,寫出其中有兩個相等實數(shù)根的一元二次方程_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA5,OC3.若把矩形OABC繞著點O逆時針旋轉(zhuǎn),使點A恰好落在BC邊上的A1處,則點C的對應(yīng)點C1的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點EAD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連結(jié)AF、BFEF,過點FGFAFAD于點G,設(shè)ADAEn

1)線段AE和線段EG的數(shù)量關(guān)系是:   ;

2)如圖②,當(dāng)點F落在AC上時,用含n的代數(shù)式表示ADAB的值;

3)若AD4AB,且FCG為直角三角形,求n的值.(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若某拋物線上有兩點A、B關(guān)于原點對稱,則稱該拋物線為完美拋物線.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是完美拋物線”:

(1)試判斷ac的符號;

(2)若c=-1,該二次函數(shù)圖象與y軸交于點C,且SABC=1.

①求a的值;

②當(dāng)該二次函數(shù)圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是直線y=﹣x上的動點,點Bx軸上的動點,若AB2,則AOB面積的最大值為_____

查看答案和解析>>

同步練習(xí)冊答案