【題目】如圖,BD是ABCD的一條對(duì)角線.AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F.求證:∠DAE=∠BCF.

【答案】見解析

【解析】試題分析:由四邊形ABCD為平行四邊形,根據(jù)平行四邊形的對(duì)邊平行且相等得到AD=BC,AD∥BC,由兩直線平行,內(nèi)錯(cuò)角相等可得∠ADB=∠CBD,再由AE⊥BD,CF⊥BD得∠AED=∠CFB=90°,利用AAS證得△ADE≌△CBF,利用全等三角形的對(duì)應(yīng)角相等即可得∠DAE=∠BCF.

試題解析:

證明:∵平行四邊形ABCD,

∴AD=BC,AD∥BC,

∴∠ADB=∠CBD,

∵AE⊥BD,CF⊥BD,

∴∠AED=∠CFB=90°,

在△ADE和△CBF中, ,

∴△ADE≌△CBF(AAS),

∴∠DAE=∠BCF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O為等腰三角形ABC的外接圓,AB=AC.AD是⊙O的直徑,切線DE與AC的延長線相交于點(diǎn)E.
(1)求證:DE∥BC;
(2)若DF=n,∠BAC=2a,寫出求CE長的思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校有500名學(xué)生.為了解全校每名學(xué)生的上學(xué)方式,該校數(shù)學(xué)興趣小組在全校隨機(jī)抽取了100名學(xué)生進(jìn)行抽樣調(diào)查.整理樣本數(shù)據(jù),得到扇形統(tǒng)計(jì)圖如右圖:

(1)本次調(diào)查的個(gè)體是 ,樣本容量是 ;

(2)扇形統(tǒng)計(jì)圖中,乘私家車部分對(duì)應(yīng)的圓心角是 度;

(3)請(qǐng)估計(jì)該校500名學(xué)生中,選擇騎車和步行上學(xué)的一共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+n與x軸交于點(diǎn)A,與y軸交于點(diǎn)B(點(diǎn)A與點(diǎn)B不重合),拋物線y=﹣ x2﹣2x+c經(jīng)過點(diǎn)A、B,拋物線的頂點(diǎn)為C.

(1)∠BAO=°;
(2)求tan∠CAB的值;
(3)在拋物線上是否存在點(diǎn)P,能夠使∠PCA=∠BAC?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的方格紙中每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1,0)、B(4,﹣1)、C(3,2).

(1)在所給的直角坐標(biāo)系中畫出ABC;

(2)把ABC向左平移3個(gè)單位,再向上平移2個(gè)單位得到A′B′C′,畫出A′B′C′并寫出點(diǎn)C′的坐標(biāo);

(3)求A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D、E分別在BC、AC邊上,且∠ADE=60°,AB=3,BD=1,則EC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列一段文字,再解答問題
已知在平面內(nèi)有兩點(diǎn),,其兩點(diǎn)間的距離公式為,同時(shí),當(dāng)兩點(diǎn)所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可簡(jiǎn)化為
已知點(diǎn),,試求A,B兩點(diǎn)間的距離;
已知點(diǎn)A,B在平行于y軸的直線上,點(diǎn)A的縱坐標(biāo)為5,點(diǎn)B的縱坐標(biāo)為,試求AB兩點(diǎn)間的距離;
已知點(diǎn),,判斷線段ABBC,AC中哪兩條是相等的?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),過點(diǎn)C作⊙O的切線,交BA的延長線交于點(diǎn)D,過點(diǎn)B作BE⊥BA,交DC延長線于點(diǎn)E,連接OE,交⊙O于點(diǎn)F,交BC于點(diǎn)H,連接AC.
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個(gè)數(shù)是( 。

; ②假分?jǐn)?shù)的倒數(shù)是真分?jǐn)?shù);③=1,所以、互為倒數(shù);④1的倒數(shù)是;a的倒數(shù)是

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案