【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,增加下列條件后,ABCD不一定是菱形的是( )
A.DC=BC
B.AC⊥BD
C.AB=BD
D.∠ADB=∠CDB
【答案】C
【解析】解:∵四邊形ABCD為平行四邊形,要是其成為一菱形,
C中對(duì)角線和鄰邊相等不能滿足條件,C錯(cuò)誤,
而B(niǎo),C,D均可使在四邊形是平行四邊形的基礎(chǔ)上滿足其為菱形.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分,以及對(duì)菱形的判定方法的理解,了解任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是平行四邊形.直線L經(jīng)過(guò)O、C兩點(diǎn).點(diǎn)A的坐標(biāo)為(8,0),點(diǎn)B的坐標(biāo)為(11,4),動(dòng)點(diǎn)P在線段OA上從點(diǎn)O出發(fā)以每秒1個(gè)單位的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿A→B→C的方向向點(diǎn)C運(yùn)動(dòng),過(guò)點(diǎn)P作PM垂直于x軸,與折線O一C﹣B相交于點(diǎn)M.當(dāng)Q、M兩點(diǎn)相遇時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒(t>0).△MPQ的面積為S.
(1)點(diǎn)C的坐標(biāo)為 ,直線L的解析式為 .
(2)試求點(diǎn)Q與點(diǎn)M相遇前S與t的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的t的取值范圍.
(3)試求題(2)中當(dāng)t為何值時(shí),S的值最大,并求出S的最大值.
(4)隨著P、Q兩點(diǎn)的運(yùn)動(dòng),當(dāng)點(diǎn)M在線段CB上運(yùn)動(dòng)時(shí),設(shè)PM的延長(zhǎng)線與直線L相交于點(diǎn)N.試探究:當(dāng)t為何值時(shí),△QMN為等腰三角形?請(qǐng)直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空:(1)a6÷a2=a6(___)2=a(___);
(2)(-a)3÷(-a)2=(______)(___)=(______).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商場(chǎng)經(jīng)銷(xiāo)一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.
(1)現(xiàn)該商場(chǎng)要保證每天盈利6 000元,同時(shí)又要顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?
(2)若該商場(chǎng)單純從經(jīng)濟(jì)角度看,每千克這種水果漲價(jià)多少元,能使商場(chǎng)獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B都在數(shù)軸上,且AB=6
(1)點(diǎn)B表示的數(shù)是;
(2)若點(diǎn)B以每秒2個(gè)單位的速度沿?cái)?shù)軸向右運(yùn)動(dòng),則2秒后點(diǎn)B表示的數(shù)是;
(3)若點(diǎn)A、B都以每秒2個(gè)單位沿?cái)?shù)軸向右運(yùn)動(dòng),而點(diǎn)O不動(dòng),t秒后有一個(gè)點(diǎn)是一條線段的中點(diǎn),求t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】扇形統(tǒng)計(jì)圖中,某部分所對(duì)應(yīng)的扇形圓心角為36°,則該部分所占總體的百分比_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小聰和小敏在研究絕對(duì)值的問(wèn)題時(shí),遇到了這樣一道題:
(1)當(dāng)式子|x﹣1|+|x+5|取最小值時(shí),x應(yīng)滿足的條件是 , 此時(shí)的最小值是 . 小聰說(shuō):利用數(shù)軸求線段的長(zhǎng)可以解決這個(gè)問(wèn)題.如圖,點(diǎn)A,B對(duì)應(yīng)的數(shù)分別為﹣5,1,則線段AB的長(zhǎng)為6,我發(fā)現(xiàn)也可通過(guò)|1﹣(﹣5)|或|﹣5﹣1|來(lái)求線段AB的長(zhǎng),即數(shù)軸上兩點(diǎn)間的線段的長(zhǎng)等于它們所對(duì)應(yīng)的兩數(shù)差的絕對(duì)值.
小敏說(shuō):我明白了,若點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,線段AC的長(zhǎng)就可表示為|x﹣(﹣5)|,那么|x﹣1|表示的是線段的長(zhǎng).
小聰說(shuō):對(duì),求式子|x﹣1|+|x+5|的最小值就轉(zhuǎn)化為數(shù)軸上求線段AC+BC長(zhǎng)的最小值,而點(diǎn)C在線段AB上時(shí)AC+BC=AB最小,最小值為6.
小敏說(shuō):點(diǎn)C在線段AB上,即x取﹣5,1之間的有理數(shù)(包括﹣5,1),因此相應(yīng)x的取值范圍可表示為﹣5≤x≤1時(shí),最小值為6.
請(qǐng)你根據(jù)他們的方法解決下面的問(wèn)題:
(2)小敏說(shuō)的|x﹣1|表示的是線段的長(zhǎng);
(3)當(dāng)式子|x﹣3|+|x+2|取最小值時(shí),x應(yīng)滿足的條件是;
(4)當(dāng)式子|x﹣2|+|x+3|+|x+4|取最小值時(shí),x應(yīng)滿足的條件是;
(5)當(dāng)式子|x﹣a|+|x﹣b|+|x﹣c|+|x﹣d|(a<b<c<d)取最小值時(shí),x應(yīng)滿足的條件是 , 此時(shí)的最小值是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com