【題目】如圖,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點(diǎn),P是對角線AC上的一個(gè)動點(diǎn),則PE+PB的最小值是 .
【答案】
【解析】解:作E點(diǎn)關(guān)于AC對稱點(diǎn)E′點(diǎn),連接E′B,E′B與AC的交點(diǎn)即是P點(diǎn),
∵菱形ABCD中,AB=2,∠BAD=60°,E是AB的中點(diǎn),
∴AE′=AE=BE=1,
∴△AEE′為等邊三角形,
∴∠AEE′=60°,
∴∠E′EB=120°,
∵BE=EE′,
∴∠EE′B=30°,
∴∠AE′B=90°,
BE′= = ,
∵PE+PB=BE′,
∴PE+PB的最小值是: .
故答案為: .
根據(jù)軸對稱最短問題作法首先求出P點(diǎn)的位置,再結(jié)合菱形的性質(zhì)得出△AEE′為等邊三角形,進(jìn)而求出PE+PB的最小值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“道路交通管理?xiàng)l例”規(guī)定:小汽車在城街上行駛速度不得超過70千米/小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對車速檢測儀A正前方30米B處,過了2秒后,測得小汽車C與車速檢測儀A間距離為50米,這輛小汽車超速了嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三個(gè)生產(chǎn)日光燈管的廠家在廣告中宣稱,他們生產(chǎn)的日光燈管在正常情況下,燈管的使用壽命為12個(gè)月.工商部門為了檢查他們宣傳的真實(shí)性,從三個(gè)廠家各抽取11只日光燈管進(jìn)行檢測,燈管的使用壽命(單位:月)如下:
(1)這三個(gè)廠家的廣告,分別利用了統(tǒng)計(jì)中的哪一個(gè)特征數(shù)(平均數(shù)、中位數(shù)、眾數(shù))進(jìn)行宣傳?
(2)如果三個(gè)廠家產(chǎn)品的售價(jià)一樣,作為顧客的你選購哪個(gè)廠家的產(chǎn)品?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC 的頂點(diǎn)分別為 A(-2,2)、B(-4,5)、C(-5,1)和直線 m (直線 m 上各點(diǎn)的 橫坐標(biāo)都為 1).
(1)作出△ABC 關(guān)于 x 軸對稱的圖形△A1B1C1,并寫出點(diǎn) B1 的坐標(biāo);
(2)作出△ABC 關(guān)于 y 軸對稱的圖形△A2 B2C2,并寫出點(diǎn) B2 的坐標(biāo);
(3)若點(diǎn) P( a,b )是△ABC 內(nèi)部一點(diǎn),寫出點(diǎn) P 關(guān)于直線 m 對稱的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形 ABCD 中,BC=CD,連接 AC、BD,∠ADB=90°.
(1)如圖 1,若 AD=BD=BC,過點(diǎn) D 作 DF⊥AB 于點(diǎn) F,交 AC 于點(diǎn) E:
①求∠DAC;
②猜想 AE、DE、CE 的數(shù)量關(guān)系,并證明你的猜想;
(2)如圖 2,若 AC=BD,求∠DAC 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為迎接中國森博會,某商家計(jì)劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(jià)(元/件)是采購數(shù)量(件)的一次函數(shù),下表提供了部分采購數(shù)據(jù).
采購數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(jià)(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(jià)(元/件) | 1290 | 1280 | … |
(1)設(shè)A產(chǎn)品的采購數(shù)量為x(件),采購單價(jià)為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的 ,且A產(chǎn)品采購單價(jià)不低于1200元,求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購A種產(chǎn)品多少件時(shí)總利潤最大,并求最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】7張如圖1的長為a,寬為b(a>b)的小長方形紙片,按圖2的方式不重疊地放在矩形ABCD內(nèi),未被覆蓋的部分(兩個(gè)矩形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,則a,b滿足( )
A.a=bB.a=3bC.a=bD.a=4b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com