用一張半徑為24cm的扇形紙板做一個(gè)如圖所示的圓錐形小丑帽子側(cè)面(接縫忽略不計(jì)),如果做成的圓錐形小丑帽子的底面半徑為10cm,那么這張扇形紙板的面積是           

試題分析:圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑高.
由題意得這張扇形紙板的面積
點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握?qǐng)A錐的側(cè)面積公式,即可完成.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在BAEO中,AB=2BO,AB=6,以點(diǎn)O為圓心,OB為半徑畫⊙O分別交AB、OE于點(diǎn)D、C,且點(diǎn)D恰好是AB的中點(diǎn),則劣弧的長(zhǎng)是   。 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如右圖,圓心角∠AOB=100°,則∠ACB的度數(shù)為( )
A.100°B.50°C.80°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義:對(duì)于任意的三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若滿足,則稱這個(gè)三角形為勾股三角形.
(1)已知某一勾股三角形的三個(gè)內(nèi)角度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(2)如圖,△ABC是⊙O的內(nèi)接三角形,AB=,AC=,BC=2,BE是⊙O的直徑,交AC于D.         
 
①求證:△ABC是勾股三角形;
②求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

兩圓內(nèi)切,其中一個(gè)圓的半徑為5,兩圓的圓心距為2,則另一個(gè)圓的半徑是         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,點(diǎn)P是正方形ABCD內(nèi)的一點(diǎn),連結(jié)PA,PB,PC.

(1)如圖甲,將△PAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△的位置.
①設(shè)AB的長(zhǎng)為a,PB的長(zhǎng)為b(b<a),求△PAB旋轉(zhuǎn)到△的過程中邊PA所掃過區(qū)域 (圖甲中陰影部分)的面積;
②若PA=3,PB=6,∠APB=135°,求PC的長(zhǎng).
(2)如圖乙,若PA2+PC2=2PB2,請(qǐng)說明點(diǎn)P必在對(duì)角線AC上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若相交兩圓的半徑分別為4和7,則它們的圓心距可能是(    )
A.2B.3C.6D.11

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上一點(diǎn),點(diǎn)C是弧AD的中點(diǎn),弦CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長(zhǎng)線于點(diǎn)G,連接AD,分別交CE、CB于點(diǎn)P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②AD=CB;③點(diǎn)P是△ACQ的外心;④GP=GD.⑤CB∥GD.
其中正確結(jié)論的個(gè)數(shù)是(    )

A.1          B.2           C.3         D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知某三角形的邊長(zhǎng)分別是3cm、4cm、5cm, 則它的外接圓半徑是_______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案