【題目】計(jì)算:

(1)14+24﹣8

(2)(﹣3)﹣(﹣2)+(﹣4)

(3)﹣23÷×(﹣2

(4)(+)×(﹣36)

(5)﹣14×[2﹣(﹣3)2]

【答案】(1)30;(2)﹣5;(3)﹣8;(4)﹣27;(5)

【解析】

(1)根據(jù)有理數(shù)的加減法運(yùn)算法則進(jìn)行計(jì)算即可;(2)根據(jù)負(fù)數(shù)的加減運(yùn)算法則進(jìn)行計(jì)算即可;(3)根據(jù)有理數(shù)的運(yùn)算法則先算乘方再算乘除法;(4)根據(jù)分式的運(yùn)算法則,先算括號(hào)里的,再算乘法;(4)先算乘方,再算括號(hào)內(nèi)的,再算乘法,最后算減法.

解:(1)14+24﹣8

=14+24+(﹣8)

=30;

(2)(﹣3)﹣(﹣2)+(﹣4)

=(﹣3)+2+(﹣4)

=﹣5;

(3)﹣23÷×(﹣2

=﹣8×

=﹣8;

(4)(+)×(﹣36)

=(﹣18)+(﹣30)+21

=﹣27;

(5)﹣14×[2﹣(﹣3)2]

=﹣1﹣×[2﹣9]

=﹣1﹣×(﹣7)

=﹣1+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形OABC有兩邊在坐標(biāo)軸的正半軸上,如圖所示,雙曲線(xiàn)y= 與邊AB、BC分別交于D、E兩點(diǎn),OE交雙曲線(xiàn)y= 于點(diǎn)G,若DG∥OA,OA=3,則CE的長(zhǎng)為(
A.
B.1.5
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正確的結(jié)論有( )個(gè).
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校校園內(nèi)有一個(gè)大正方形花壇,如圖甲所示,它由四個(gè)邊長(zhǎng)為3米的小正方形組成,且每個(gè)小正方形的種植方案相同.其中的一個(gè)小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數(shù)圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)y=ax2+bx的圖象過(guò)點(diǎn)A(﹣1,3),頂點(diǎn)B的橫坐標(biāo)為1.

(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)點(diǎn)P在該二次函數(shù)的圖象上,點(diǎn)Q在x軸上,若以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo);
(3)如圖3,一次函數(shù)y=kx(k>0)的圖象與該二次函數(shù)的圖象交于O、C兩點(diǎn),點(diǎn)T為該二次函數(shù)圖象上位于直線(xiàn)OC下方的動(dòng)點(diǎn),過(guò)點(diǎn)T作直線(xiàn)TM⊥OC,垂足為點(diǎn)M,且M在線(xiàn)段OC上(不與O、C重合),過(guò)點(diǎn)T作直線(xiàn)TN∥y軸交OC于點(diǎn)N.若在點(diǎn)T運(yùn)動(dòng)的過(guò)程中, 為常數(shù),試確定k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,滿(mǎn)足y的值隨x的值增大而增大的是( 。
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形OABC的邊長(zhǎng)為4,對(duì)角線(xiàn)相交于點(diǎn)P,拋物線(xiàn)L經(jīng)過(guò)O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線(xiàn)上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫(xiě)出O、P、A三點(diǎn)坐標(biāo);
②求拋物線(xiàn)L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)y=的圖象的一支位于第一象限.

(1)判斷該函數(shù)圖象的另一支所在的象限,并求m的取值范圍;
(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)B與點(diǎn)A關(guān)于x軸對(duì)稱(chēng),若△OAB的面積為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:
﹣1)÷ ,其中x的值從不等式組 的整數(shù)解中選。

查看答案和解析>>

同步練習(xí)冊(cè)答案