【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是

【答案】3π﹣4
【解析】解:連接OD交BC于點E.

∴扇形的面積= ×(2 2π=3π,

∵點O與點D關(guān)于BC對稱,

∴OE=ED= ,OD⊥BC.

在Rt△OBE中,sin∠OBE= = ,

∴∠OBC=30°.

在Rt△COB中, =tan30°,

=

∴CO=2.

∴△COB的面積= ×2 ×2=2

陰影部分的面積=扇形面積﹣2倍的△COB的面積

=3π﹣4

所以答案是:3π﹣4

【考點精析】本題主要考查了扇形面積計算公式和翻折變換(折疊問題)的相關(guān)知識點,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2);折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,點Ax軸上,直線OC上所有的點坐標(biāo),都是二元一次方程的解,直線AC上所有的點坐標(biāo),都是二元一次方程的解,過Cx軸的平行線,交y軸與點B

1)求點AB、C的坐標(biāo);

2)如圖②,點M、N分別為線段BC,OA上的兩個動點,點M從點C以每秒1個單位長度的速度向左運動,同時點N從點O以每秒15個單位長度的速度向右運動,設(shè)運動時間為t秒,且0t4,試比較四邊形MNAC的面積與四邊形MNOB的面積的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把拋物線y= x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y= x2交于點Q,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1a∥b,則∠1+∠2=

2)如圖2,AB∥CD,則∠1+∠2+∠3= ,并說明理由

3)如圖3a∥b,則∠1+∠2+∠3+∠4=

4)如圖4,a∥b,根據(jù)以上結(jié)論,試探究∠1+∠2+∠3+∠4+…+∠n= (直接寫出你的結(jié)論,無需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點E,F(xiàn)分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點M,N,以點A為圓心,AB長為半徑畫弧BD.下列結(jié)論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結(jié)論的個數(shù)是( )

A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,點E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.

(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=4,求平行四邊形ADEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問題中一種重要的思想方法,通過旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問題.已知,中,,,點在邊上,且.

1)如圖,當(dāng)時,將繞點順時針旋轉(zhuǎn)的位置,連接,

的度數(shù);

②求證;

2)如圖,當(dāng)時,猜想、的數(shù)量關(guān)系,并說明理由;

3)如圖,當(dāng),時,請直接寫出的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正△ABC中,D,E分別在AC,AB上,且 ,AE=BE,則有( )

A.△AED∽△ABC
B.△ADB∽△BED
C.△BCD∽△ABC
D.△AED∽△CBD

查看答案和解析>>

同步練習(xí)冊答案