如圖,在矩形ABCD中,E,F(xiàn)分別是CD,BC上的點(diǎn),若∠AEF=90°,則一定有                          
A.△ADE∽△AEFB.△ADE∽△ECFC.△ECF∽△AEF D.△AEF∽△ABF
B
根據(jù)題意,可得,∠D=∠C,∠AED+∠CEF=∠CEF+∠CFE=90°,
∴∠AED=∠EFC,∴△ADE∽△ECF;所以,選項(xiàng)B正確,可排除選項(xiàng)A、C、D.故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,GCDEF的交點(diǎn).

(1)求證:△BCF≌△DCE
(2)若BC=5,CF=3,∠BFC=90°,求DGGC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

兩個(gè)相似五邊形一組對(duì)應(yīng)邊的長(zhǎng)分別為4cm和6cm,若他們的面積和為260cm,則較大五邊形的面積是          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知△ABC和△DEF的頂點(diǎn)坐標(biāo)分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7)。按下列要求畫(huà)圖:以點(diǎn)O為位似中心,將△ABC向y軸左側(cè)按比例尺2:1放大得△ABC的位似圖形△A1B1C1,并解決下列問(wèn)題:
(1)頂點(diǎn)A1的坐標(biāo)為    ▲   ,B1的坐標(biāo)為    ▲   ,C1的坐標(biāo)為    ▲   ;
(2)請(qǐng)你利用旋轉(zhuǎn)、平移兩種變換,使△A1B1C1通過(guò)變換后得到△A2B2C2,且△A2B2C2恰與△DEF拼接成一個(gè)平行四邊形(非正方形)。寫(xiě)出符合要求的變換過(guò)程。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,將一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按圖示方式疊放,斜邊交點(diǎn)為O,則△AOB與△COD 的面積之比等于     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

小張用手機(jī)拍攝得到甲圖,經(jīng)放大后得到乙圖,甲圖中的線(xiàn)段AB在乙圖中的對(duì)應(yīng)線(xiàn)段是( 。
A.FGB.FHC.EHD.EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點(diǎn)E,交BC于點(diǎn)D,連結(jié)BE、AD交于點(diǎn)P. 求證:
(1)D是BC的中點(diǎn);
(2)△BEC ∽△ADC;
(3)AB× CE=2DP×AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有一塊直角三角形木板如圖所示,已知∠C=90°,BC=3cm, AC=4cm.根據(jù)需要,要把它加工成一個(gè)正方形木板,小明和小麗分別設(shè)計(jì)了如圖1和圖2的兩種方法,哪一塊正方形木板面積更大?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(1)△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC,將△DEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),當(dāng)DF邊與AB邊重合時(shí),旋轉(zhuǎn)中止.現(xiàn)不考慮旋轉(zhuǎn)開(kāi)始和結(jié)束時(shí)重合的情況,設(shè)DE,DF(或它們的延長(zhǎng)線(xiàn))分別交BC(或它的延長(zhǎng)線(xiàn)) 于G,H點(diǎn),如圖(2)

(1)問(wèn):始終與△AGC相似的三角形有              
(2)設(shè)CG=x,BH=y,求y關(guān)于x的函數(shù)關(guān)系式(只要求根據(jù)圖(2)的情形說(shuō)明理由)
(3)問(wèn):當(dāng)x為何值時(shí),△AGH是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案