【題目】如圖,已知直線y=kx+6與拋物線y=ax2+bx+c相交于A,B兩點(diǎn),且點(diǎn)A(1,4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上.

(1)求拋物線的解析式;

(2)在(1)中拋物線的第三象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo).

【答案】(1)y=﹣(x﹣1)2+4=﹣x2+2x+3

(2)存在.P(,).

(3)Q點(diǎn)坐標(biāo)為(0,)或(0,-)或(0,1)或(0,3).

【解析】

試題分析:(1)由待定系數(shù)法確定函數(shù)解析式;

(2)先確定出點(diǎn)C坐標(biāo),再由△POB≌△POC建立方程,求解即可,

(3)分三種情況計(jì)算,分別判斷△DAQ1∽△DOB,△BOQ2∽△DOB,△BOQ3∽△Q3EA,列出比例式建立方程求解即可.

試題解析:(1)把A(1,4)代入y=kx+6,

∴k=﹣2,

∴y=﹣2x+6,

由y=﹣2x+6=0,得x=3

∴B(3,0).

∵A為頂點(diǎn)

∴設(shè)拋物線的解析為y=a(x﹣1)2+4,

∴a=﹣1,

∴y=﹣(x﹣1)2+4=﹣x2+2x+3

(2)存在.

當(dāng)x=0時(shí)y=﹣x2+2x+3=3,

∴C(0,3)

∵OB=OC=3,OP=OP,

∴當(dāng)∠POB=∠POC時(shí),△POB≌△POC,

作PM⊥x軸于M,作PN⊥y軸于N,

∴∠POM=∠PON=45°.

∴PM=PN

∴設(shè)P(m,m),則m=﹣m2+2m+3,

∴m=,

∵點(diǎn)P在第三象限,

∴P().

(3)①如圖,當(dāng)∠Q1AB=90°時(shí),作AE⊥y軸于E,

∴E(0,4)

∵∠DA Q1=∠DOB=90°,∠AD Q1=∠BDO

∴△DAQ1∽△DOB,

,

∴DQ1=,

∴OQ1=

∴Q1(0,);

②如圖,

當(dāng)∠Q2BA=90°時(shí),∠DBO+∠OBQ2=∠OBQ2+∠O Q2B=90°

∴∠DBO=∠O Q2B

∵∠DOB=∠B O Q2=90°

∴△BOQ2∽△DOB,

,

,

∴OQ2=

∴Q2(0,-);

③如圖,當(dāng)∠AQ3B=90°時(shí),∠AEQ3=∠BOQ3=90°,

∴∠AQ3E+∠E AQ3=∠AQ3E+∠B Q3O=90°

∴∠E AQ3=∠B Q3O

∴△BOQ3∽△Q3EA,

,,

∴OQ324OQ3+3=0,

∴OQ3=13,

∴Q3(0,1)(0,3).

綜上,Q點(diǎn)坐標(biāo)為(0,)或(0,-)或(0,1)或(0,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.

(1)求證:ABM≌△BCN;

(2)求APN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,軸,軸,點(diǎn)x軸上,A1,2),B-1,2),D-3,0),E-3,-2),G3,-2)把一條長(zhǎng)為2018個(gè)單位長(zhǎng)度且沒(méi)有彈性的細(xì)線(線的粗細(xì)忽略不計(jì))的一端固定在點(diǎn)A處,并按A-B-D-E-F-G-H-P-A…的規(guī)律緊繞在圖形“凸”的邊上,則細(xì)線另一端所在位置的點(diǎn)的坐標(biāo)是(

A.1,1B.1,2

C.12D.1,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN

如圖2,在梯形ABCD中,BCAD,AB=BC=CD, 點(diǎn)M、N分別在AD、CD上,若∠MBN=ABC ,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明.

如圖3,在四邊形ABCD中,AB=BC,ABC+ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖,在直線MN上求作一點(diǎn)P,使點(diǎn)P到射線OAOB的距離相等.(要求用尺規(guī)作圖,保留作圖痕跡,不必寫(xiě)作法和證明過(guò)程)

2)等腰三角形的兩邊長(zhǎng)滿足|a4|(b9)20.求這個(gè)等腰三角形的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn) A 是反比例函數(shù) y 在第一象限圖象上的一個(gè)動(dòng)點(diǎn),連接 OA,以OA 為長(zhǎng),OA為寬作矩形 AOCB,且點(diǎn) C 在第四象限,隨著點(diǎn) A 的運(yùn)動(dòng),點(diǎn) C 也隨之運(yùn)動(dòng),但點(diǎn) C 始終在反比例函數(shù) y 的圖象上,則 k 的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在第一象限,點(diǎn)C在第四象限且OC=5,點(diǎn)Bx軸的正半軸上且OB=6,OAB=90°OA=AB.

(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)點(diǎn)P是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)O,B重合),過(guò)點(diǎn)P的直線ly軸平行,直線l交邊OA成邊AB于點(diǎn)Q,交邊OC或邊CB于點(diǎn)R,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段QR的長(zhǎng)度為m,已知t=4時(shí),直線l恰好過(guò)點(diǎn)C,當(dāng)0<t<3時(shí),求m關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知ACBD,EA,EB分別平分CAB和DBA,CD過(guò)E點(diǎn).求證:AB=AC+BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=kx2+(2k-1)x-1x軸交點(diǎn)的橫坐標(biāo)為x1,x2(x1<x2),則對(duì)于下列結(jié)論:(1) 當(dāng)x= -2時(shí),y=1;(2) 當(dāng)x> x2時(shí),y>0;(3)方程kx2+(2k-1)x-1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1 = ,其中正確的結(jié)論有_______(只需填寫(xiě)序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案