(1)閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1

①根據(jù)以上規(guī)律,可得(x-1)(xn+xn-1+xn-2+…+x+1)=
xn+1-1
xn+1-1
(n為正整數(shù));
②根據(jù)這一規(guī)律,計(jì)算:1+2+22+23+24+…22011+22012+22013=
22014-1
22014-1

(2)閱讀下列材料,回答問題:
關(guān)于x的方程:x+
1
x
=a+
1
a
的解是x1=a,x2=
1
a
;x+
2
x
=a+
2
a
的解是x1=a,x2=
2
a
;x+
3
x
=a+
3
a
的解是x1=a,x2=
3
a


①請觀察上述方程與解的特征,猜想關(guān)于x的方程x+
m
x
=a+
m
a
(m≠0)
的解;
②請你寫出關(guān)于x的方程x+
2
x-3
=m+
2
m-3
的解.
分析:(1)①觀察一系列等式得到一般性規(guī)律,即可確定出所求式子的結(jié)果;②利用得出的規(guī)律計(jì)算即可得到結(jié)果;
(2)①觀察一系列方程的解得出一般性規(guī)律,即可得到所求方程的解;②方程變形后,利用得出的規(guī)律即可求出解.
解答:解:(1)①根據(jù)題意得:(x-1)(xn+xn-1+xn-2+…+x+1)=xn+1-1;
②原式=(2-1)(1+2+22+23+24+…22011+22012+22013)-1
=22014-1;

(2)①根據(jù)題意得:方程的解為x1=a,x2=
m
a
;
②方程變形得:x-3+
2
x-3
=m-3+
2
m-3
,
∴x-3=m-3,x-3=
2
m-3

則x1=m,x2=
3m-7
m-3

故答案為:(1)①xn+1-1;②22014-1
點(diǎn)評:此題考查了分式方程的解,屬于規(guī)律型試題,弄清題中的規(guī)律是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、(1)閱讀以下內(nèi)容:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-1
(n為正整數(shù));
(2)根據(jù)這一規(guī)律,計(jì)算:1+2+22+23+24+…+22006+22007=
22008-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、(1)李剛同學(xué)在計(jì)算122和892時(shí),借助計(jì)算器探究“兩位數(shù)的平方”有否簡捷的計(jì)算方法.他經(jīng)過探索并用計(jì)算器驗(yàn)證,再用數(shù)學(xué)知識解釋,得出“兩位數(shù)的平方”可用“豎式計(jì)算法”進(jìn)行計(jì)算,
如:122=144.其中第一行的“01”和“04”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們并排排列;第二行的“04”為十位數(shù)與個(gè)位數(shù)積的2倍,占兩個(gè)位置,其結(jié)果不夠兩位的就在“十位”位置上放上“0”,再把它們按上面的豎式相加就得到了122=144,
再如892=7921.其中第一行的“64”和“81”分別是十位數(shù)和個(gè)位數(shù)的平方,各占兩個(gè)位置,再把它們并排排列;第二行的“144”為十位數(shù)與個(gè)位數(shù)積的2倍,再把它們按上面的豎式相加就得到了892=7921.
①請你用上述方法計(jì)算752和682(寫出“豎式計(jì)算”過程);
②請你用數(shù)學(xué)知識解釋這種“兩位數(shù)平方的豎式計(jì)算法”合理性.
(2)閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1;
(x-1)(x2+x+1)=x3-1;
(x-1)(x3+x2+x+1)=x4-1;
①根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-l
(n為正整數(shù));
②根據(jù)這一規(guī)律,計(jì)算:1+2+22+23+24+…+22008+22009=
22010-l
( n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀以下內(nèi)容:(x-1)(x+1)=x2-1,(x-1)(x2+x+1)=x3-1,(x-1)(x3+x2+x+1)=x4-1,根據(jù)上面的規(guī)律得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-1
xn-1
(n為正整數(shù));根據(jù)這一規(guī)律,計(jì)算:1+2+22+23+24+…+22010+22011=
22012-1
22012-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀以下內(nèi)容:
(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)(x3+x2+x+1)=x4-1
根據(jù)上面的規(guī)律,得(x-1)(xn-1+xn-2+xn-3+…+x+1)=
xn-1
xn-1

查看答案和解析>>

同步練習(xí)冊答案