【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

【答案】水壩原來的高度為12

【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.

試題解析:設BC=x米,

Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB==,

Rt△EBD中,

∵i=DBEB=11∴BD=BE,∴CD+BC=AE+AB,

2+x=4+,解得x=12,即BC=12,

答:水壩原來的高度為12米..

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3).雙曲線y=(x>0)的圖象經過BC的中點D,且與AB交于點E,連接DE.

(1)直接寫出k的值及點E的坐標;

(2)若點F是OC邊上一點,且FB⊥DE,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,函數(shù))的圖象經過點,ABx軸于點B,點C與點A關于原點O對稱, CDx軸于點D,ABD的面積為8.

(1)求mn的值;

(2)若直線k≠0)經過點C,且與x軸,y軸的交點分別為點E,F,當時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某地方政府決定在相距50kmA、B兩站之間的公路旁E點,修建一個土特產加工基地,且使C、D兩村到E點的距離相等,已知DAABA,CBABB,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中;點為坐標原點,點,點在坐標軸上,點邊上,直線軸于點.對于坐標平面內的直線,先將該直線向右平移個單位長度,再向下平移個單位長度,這種直線運動稱為直線的斜平移.現(xiàn)將直線經過次斜平移,得到直線.

(備用圖)

1)求直線與兩坐標軸圍成的面積;

2)求直線的交點坐標;

3)在第一象限內,在直線上是否存在一點,使得是等腰直角三角形?若存在,請直接寫出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點O在直線AB上,作射線OC,點D在平面內,∠BOD與∠AOC互余.

(1)若∠AOC:BOD=4:5,則∠BOD= ;

(2)若∠AOC=α(0°<α≤45°),ON平分∠COD

①當點D在∠BOC內,補全圖形,直接寫出∠AON的值(用含α的式子表示);

②若∠AON與∠COD互補,求出α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)將三張形狀、大小完全相同的平行四邊形透明紙片分別放在方格紙中,方格紙中的每個小正方形的邊長均為1,并且平行四邊形 紙片的每個頂點與小正方形的頂點重合(如圖、圖、圖).

矩形(正方形)

,

分別在圖、圖、圖中,經過平行四邊形紙片的任意一個頂點畫一條裁剪線,沿此裁剪線將平行四邊形紙片裁成兩部分,并把這兩部分重新拼成符合下列要求的幾何圖形.

要求:

(1)在左邊的平行四邊形紙片中畫一條裁剪線,然后在右邊相對應的方格紙中,按實際大小畫出所拼成的符合要求的幾何圖形.

(2)裁成的兩部分在拼成幾何圖形時要互不重疊且不留空隙.

(3)所畫出的幾何圖形的各頂點必須與小正方形的頂點重合.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲、丙兩地相距500km,一列快車從甲地駛往丙地,途中經過乙地;一列慢車從乙地駛往丙地,兩車同時出發(fā),同向而行,折線ABCD表示兩車之間的距離y(km)與慢車行駛的時間為x(h)之間的函數(shù)關系.根據(jù)圖中提供的信息,下列說法不正確的是(  )

A. 甲、乙兩地之間的距離為200 kmB. 快車從甲地駛到丙地共用了2.5 h

C. 快車速度是慢車速度的1.5D. 快車到達丙地時,慢車距丙地還有50 km

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔABC中,AB=AC,A=40O,延長ACD,使CD=BC,點PΔABD的內心,則∠BPC=

A. 105° B. 110° C. 130° D. 145°

查看答案和解析>>

同步練習冊答案