精英家教網 > 初中數學 > 題目詳情
圖(1)是邊長不等的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖(2));
探究:在圖(2)中,線段BE與AD之間有怎樣的大小關系?試證明你的結論.
(2)操作:將圖(1)中的△C′D′E′固定,將△ABC 移動,使頂點C落在C′D′的中點,邊AC交E′D′于M,邊BC交C′E′于N.若△C′D′E′的邊長為a,∠ACD′=α (30°<α<90°)(圖(3));
探究:在圖(3)中線段C′N•D′M的值是否隨α的變化而變化?如果沒有變化,請求出C′N•D′M的值;如果有變化,請說明理由.

【答案】分析:(1)根據等邊三角形性質得出AC=BC,CD=CE,∠DCE=∠ACB=60°,求出∠DCA=∠ECB,根據SAS證出△DCA≌△ECB即可;
(2)根據等邊三角形性質和三角形的內角和定理求出∠C′=∠D′,∠CMD′=∠C′CN,推出△CMD′∽△NCC′,得出比例式,代入求出即可.
解答:(1)BE=AD,
證明:∵△ABC和△CDE是等邊三角形,
∴AC=BC,CD=CE,∠DCE=∠ACB=60°,
∴∠DCE-∠ACE=∠ACB-∠ACE,
∴∠DCA=∠ECB,
∵在△DCA和△ECB中

∴△DCA≌△ECB(SAS),
∴BE=AD.

(2)解:線段C′N•D′M的值不隨α的變化而變化,
∵△C′D′E′的邊長為a,C是C′D′的中點,
∴CD′=CC′=,
∵△C′D′E′和△ACB是等邊三角形,
∴∠D′=∠ACB=∠C′=60°,
∴∠D′CM+∠C′CN=180°-60°=120°,∠D′CM+∠CMD′=180°-60°=120°,
∴∠CMD′=∠C′CN,
∵∠C′=∠D′=60°,
∴△CMD′∽△NCC′,
=,
∴C′N•D′M=CD′•CC′=×=,
即線段C′N•D′M的值不隨α的變化而變化,永遠是
點評:本題考查了全等三角形的性質和判定,旋轉的性質,相似三角形的性質和判定,等邊三角形的性質,三角形的內角和定理等知識點的綜合運用,綜合性比較強,難度偏大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2007•東城區(qū)二模)圖(1)是邊長不等的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖(2));
探究:在圖(2)中,線段BE與AD之間有怎樣的大小關系?試證明你的結論.
(2)操作:將圖(1)中的△C′D′E′固定,將△ABC 移動,使頂點C落在C′D′的中點,邊AC交E′D′于M,邊BC交C′E′于N.若△C′D′E′的邊長為a,∠ACD′=α (30°<α<90°)(圖(3));
探究:在圖(3)中線段C′N•D′M的值是否隨α的變化而變化?如果沒有變化,請求出C′N•D′M的值;如果有變化,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,是由兩個邊長不等的正方形紙片組成的一個圖形,要將其剪拼成一個既不重疊也無空隙的大正方形,則剪出的塊數最少為
5
5
塊.請你在圖中畫出裁剪線,并說明拼接方法.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

圖(1)是邊長不等的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
(1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖(2));
探究:在圖(2)中,線段BE與AD之間有怎樣的大小關系?試證明你的結論.
(2)操作:將圖(1)中的△C′D′E′固定,將△ABC 移動,使頂點C落在C′D′的中點,邊AC交E′D′于M,邊BC交C′E′于N.若△C′D′E′的邊長為a,∠ACD′=α (30°<α<90°)(圖(3));
探究:在圖(3)中線段C′N•D′M的值是否隨α的變化而變化?如果沒有變化,請求出C′N•D′M的值;如果有變化,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,是由兩個邊長不等的正方形紙片組成的一個圖形,要將其剪拼成一個既不重疊也無空隙的大正方形,則剪出的塊數最少為______塊.請你在圖中畫出裁剪線,并說明拼接方法.
精英家教網

查看答案和解析>>

同步練習冊答案