【題目】如圖,在Rt△ABC中,AB=BC=4,D為BC的中點,在AC邊上存在一點E,連接ED,EB,則△BDE周長的最小值為 .
【答案】2 +2
【解析】解:過B作BO⊥AC于O,延長BO至B′,使BO=B′O,連接B′D,交AC于E,連接BE、B′C,
∴AC為BB′的垂直平分線,
∴BE=B′E,B′C=BC=4,
此時△BDE的周長為最小,
∵∠B′BC=45°,
∴∠BB′C=45°,
∴∠BCB′=90°,
∵D為BC的中點,
∴BD=DC=2,
∴B′D= = =2 ,
∴△BDE的周長=BD+DE+BE=B′E+DE+BD=DB′+DB=2 +2,
故答案為:2 +2.
作B關于AC的對稱點B′,連接B′D、B′C、BE,得B′C=BC=4,且△BB′C是等腰直角三角形,所以利用勾股定理得DB′的長,所以可以求得△BDE的周長的最小值為2 +2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點O以每秒3°的速度沿順時針方向旋轉一周.如圖2,經過t秒后,OM恰好平分∠BOC.①求t的值;②此時ON是否平分∠AOC?請說明理由;
(2)在(1)問的基礎上,若三角板在轉動的同時,射線OC也繞O點以每秒6°的速度沿順時針方向旋轉一周,如圖3,那么經過多長時間OC平分∠MON?請說明理由;
(3)在(2)問的基礎上,經過多長時間OC平分∠MOB?請畫圖并說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售甲,乙兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:
甲 | 乙 | |
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元.
(毛利潤=(售價 進價)×銷售量)
(1)該商場計劃購進甲,乙兩種品牌的教學設備各多少套?
(2)通過市場調研,該商場決定在原計劃的基礎上,減少甲種教學設備的購進數(shù)量,增加乙種教學設備的購進數(shù)量,已知乙種教學設備增加的數(shù)量是甲種教學設備減少數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過69萬元,問甲種教學設備購進數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉180°,所得拋物線的解析式是( )
A.y=﹣(x+1)2+2
B.y=﹣(x﹣1)2+4
C.y=﹣(x﹣1)2+2
D.y=﹣(x+1)2+4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角△ABC中,AC是最短邊;以AC中點O為圓心, AC長為半徑作⊙O,交BC于E,過O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是 的中點;
(2)求證:∠DAO=∠B+∠BAD;
(3)若 ,且AC=4,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin∠C= ,BC=12,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車從A開往360km外的B,全程的前一部分為高速公路,后一部分為普通公路.若汽車在高速公路和普通公路上分別以某一速度勻速行駛,汽車行駛的路程y(單位:km)與時間x(單位:h)之間的關系如圖所示,則下列結論正確的是( )
A.汽車在高速公路上的行駛速度為100km/h
B.普通公路總長為90km
C.汽車在普通公路上的行駛速度為60km/h
D.汽車出發(fā)后4h到B地
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了創(chuàng)建書香校園,切實引導學生多讀書,讀好書.某中學開展了“好書伴我成長”的讀書節(jié)活動,為了了解本校學生每周課外閱讀時間,隨機抽取部分學生進行問卷調查,將課外閱讀時間分為A、B、C、D四組,并利用臭氧所得的數(shù)據繪制了如下統(tǒng)計圖.
組別 | 課外閱讀t(單位:時) |
A | X<2 |
B | 2≤x<3 |
C | 3≤x<4 |
D | x≥4 |
請根據圖中提供的信息,解答下列問題:
(1)一共調查了名學生;
(2)扇形統(tǒng)計圖中A組的圓心角度數(shù);
(3)直接補全條形統(tǒng)計圖
(4)若該校有2400名學生,根據你所調查的結果,估計每周課外閱讀時間不足3小時的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點E,F(xiàn),且∠EAF=60°.
(1)如圖1,當點E是線段CB的中點時,直接寫出線段AE,EF,AF之間的數(shù)量關系;
(2)如圖2,當點E是線段CB上任意一點時(點E不與B、C重合),求證:BE=CF;
(3)如圖3,當點E在線段CB的延長線上,且∠EAB=15°時,求點F到BC的距離.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com