【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O與斜邊AC交于點(diǎn)D,E為BC邊的中點(diǎn),連接DE,OE.
(1)求證:DE是⊙O的切線.
(2)填空: ①當(dāng)∠CAB=時,四邊形AOED是平行四邊形;
②連接OD,在①的條件下探索四邊形OBED的形狀為

【答案】
(1)解:連接OD,

∵E是BC的中點(diǎn),

O是AB的中點(diǎn),

∴OE是△ABC的中位線,

∴OE∥AC,

∠BOE=∠BAC,

∠DOE=∠ADO,

∵OD=OA,

∴∠BAC=∠ADO,

∴∠BOE=∠DOE,

在△DOE與△BOE中,

∴△DOE≌△BOE,

∴∠OBE=∠ODE=90°,

∴DE是⊙O的切線


(2)45°;正方形
【解析】解:(2)①當(dāng)∠CAB=45°時, ∴∠ADO=45°,
∴∠AOD=90°,
又∵∠EDO=90°,
∴DE∥AB,
∵OE∥AC,
∴四邊形AOED是平行四邊形;
②由①可知:∠EDO=∠DOB=∠ABC=90°,
∴四邊形OBED是矩形,
∵OD=OB,
∴矩形OBED是正方形.
所以答案是:①45°;②正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx+c與x軸交于A(5,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C(0, ).

(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使得△ACP是以點(diǎn)A為直角頂點(diǎn)的直角三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)G為拋物線上的一動點(diǎn),過點(diǎn)G作GE垂直于y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線,垂足為點(diǎn)F,連接EF,當(dāng)線段EF的長度最短時,求出點(diǎn)G的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在長方形ABCDAB=12 cm,BC=6 cm.點(diǎn)P沿AB邊從點(diǎn)A開始向點(diǎn)B2 cm/s的速度移動;點(diǎn)Q沿DA邊從點(diǎn)D開始向點(diǎn)A1 cm/s的速度移動.

設(shè)點(diǎn)PQ同時出發(fā),t(s)表示移動的時間.

(發(fā)現(xiàn)) DQ________cm,AP________cm.(用含t的代數(shù)式表示)

(拓展)(1)如圖①,當(dāng)t________s,線段AQ與線段AP相等?

(2)如圖②,點(diǎn)P,Q分別到達(dá)BA后繼續(xù)運(yùn)動,點(diǎn)P到達(dá)點(diǎn)C后都停止運(yùn)動.

當(dāng)t為何值時,AQCP?

(探究)若點(diǎn)P,Q分別到達(dá)點(diǎn)BA后繼續(xù)沿著ABCDA的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)Q第一次相遇時請直接寫出相遇點(diǎn)的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購買了前往各地的車票,如圖是用來制作完整的車票種類和相應(yīng)數(shù)量的條形統(tǒng)計圖,根據(jù)統(tǒng)計圖回答下列問題:

若去丙地的車票占全部車票的,則總票數(shù)為______ 張,去丁地的車票有______

若公司采用隨機(jī)抽取的方式發(fā)車票,小胡先從所有的車票中隨機(jī)抽取一張所有車票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車票的概率是多少?

若有一張車票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來確定給誰,其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請問這個規(guī)則對雙方是否公平?若公平請說明理由;若不公平,請通過計算說明對誰更有利.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,OD垂直弦AC于點(diǎn)E,且交⊙O于點(diǎn)D,過點(diǎn)D作⊙O的切線與BA的延長線相交于點(diǎn)F,下列結(jié)論不一定正確的是(
A.∠CDB=∠BFD
B.△BAC∽△OFD
C.DF∥AC
D.OD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識了解某廣告牌的高度(圖中GH的長),經(jīng)測量知CD=2m,在B處測得點(diǎn)D的仰角為60°,在A處測得點(diǎn)C的仰角為30°,AB=10m,且A、B、H三點(diǎn)共線,請根據(jù)以上數(shù)據(jù)計算GH的長( ,要求結(jié)果精確得到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O為直線AB上一點(diǎn),OD平分∠AOC,∠DOE=90°.

(1)∠AOD的余角是 ______ ,∠COD的余角是 ______

(2)OE是∠BOC的平分線嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,DE平分∠ADC, 且∠EDO=15°,則∠OED=________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)MN分別是AC、BC的中點(diǎn).

1)求線段MN的長;

2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;

3)若C在線段AB的延長線上,且滿足AC﹣BC=b cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長度嗎?并說明理由;

查看答案和解析>>

同步練習(xí)冊答案