在矩形ABCD中,點(diǎn)P在AD上,AB=2,AP=1.將直角尺的頂點(diǎn)放在P處,直角尺的兩邊分別交AB,BC于點(diǎn)E,F(xiàn),連接EF(如圖①).
(1)當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖②),求PC的長(zhǎng);
(2)探究:將直尺從圖②中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過(guò)程中,請(qǐng)你觀察、猜想,并解答:
①tan∠PEF的值是否發(fā)生變化?請(qǐng)說(shuō)明理由;
②直接寫(xiě)出從開(kāi)始到停止,線段EF的中點(diǎn)經(jīng)過(guò)的路線長(zhǎng).
分析:(1)由勾股定理求PB,利用互余關(guān)系證明△APB∽△DCP,利用相似比求PC; (2)tan∠PEF的值不變.過(guò)F作FG⊥AD,垂足為G,同(1)的方法證明△APB∽△DCP,得相似比===2,再利用銳角三角函數(shù)的定義求值; (3)如下圖3,畫(huà)出起始位置和終點(diǎn)位置時(shí),線段EF的中點(diǎn)O1,O2,連接O1O2,線段O1O2即為線段EF的中點(diǎn)經(jīng)過(guò)的路線長(zhǎng),也就是△BPC的中位線. 解答:解:(1)在矩形ABCD中,∠A=∠D=90°, AP=1,CD=AB=2,則PB=, ∴∠ABP+∠APB=90°, 又∵∠BPC=90°, ∴∠APB+∠DPC=90°, ∴∠ABP=∠DPC, ∴△APB∽△DCP, ∴=即=, ∴PC=2; (2)tan∠PEF的值不變. 理由:過(guò)F作FG⊥AD,垂足為G, 則四邊形ABFG是矩形, ∴∠A=∠PFG=90°,GF=AB=2, ∴∠AEP+∠APE=90°, 又∵∠EPF=90°, ∴∠APE+∠GPF=90°, ∴∠AEP=∠GPF, ∴△APE∽△GPF, ∴===2, ∴Rt△EPF中,tan∠PEF==2, ∴tan∠PEF的值不變; (3)線段EF的中點(diǎn)經(jīng)過(guò)的路線長(zhǎng)為. 點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),矩形的性質(zhì),解直角三角形.關(guān)鍵是利用互余關(guān)系證明相似三角形. |
相似三角形的判定與性質(zhì);矩形的性質(zhì);解直角三角形. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com