在矩形ABCD中,點(diǎn)P在AD上,AB=2,AP=1.將直角尺的頂點(diǎn)放在P處,直角尺的兩邊分別交AB,BC于點(diǎn)E,F(xiàn),連接EF(如圖①).

(1)當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖②),求PC的長(zhǎng);

(2)探究:將直尺從圖②中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過(guò)程中,請(qǐng)你觀察、猜想,并解答:

①tan∠PEF的值是否發(fā)生變化?請(qǐng)說(shuō)明理由;

②直接寫(xiě)出從開(kāi)始到停止,線段EF的中點(diǎn)經(jīng)過(guò)的路線長(zhǎng).

答案:
解析:

  分析:(1)由勾股定理求PB,利用互余關(guān)系證明△APB∽△DCP,利用相似比求PC;

  (2)tan∠PEF的值不變.過(guò)F作FG⊥AD,垂足為G,同(1)的方法證明△APB∽△DCP,得相似比=2,再利用銳角三角函數(shù)的定義求值;

  (3)如下圖3,畫(huà)出起始位置和終點(diǎn)位置時(shí),線段EF的中點(diǎn)O1,O2,連接O1O2,線段O1O2即為線段EF的中點(diǎn)經(jīng)過(guò)的路線長(zhǎng),也就是△BPC的中位線.

  解答:解:(1)在矩形ABCD中,∠A=∠D=90°,

  AP=1,CD=AB=2,則PB=,

  ∴∠ABP+∠APB=90°,

  又∵∠BPC=90°,

  ∴∠APB+∠DPC=90°,

  ∴∠ABP=∠DPC,

  ∴△APB∽△DCP,

  ∴

  ∴PC=2;

  (2)tan∠PEF的值不變.

  理由:過(guò)F作FG⊥AD,垂足為G,

  則四邊形ABFG是矩形,

  ∴∠A=∠PFG=90°,GF=AB=2,

  ∴∠AEP+∠APE=90°,

  又∵∠EPF=90°,

  ∴∠APE+∠GPF=90°,

  ∴∠AEP=∠GPF,

  ∴△APE∽△GPF,

  ∴=2,

  ∴Rt△EPF中,tan∠PEF==2,

  ∴tan∠PEF的值不變;

  (3)線段EF的中點(diǎn)經(jīng)過(guò)的路線長(zhǎng)為

  點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),矩形的性質(zhì),解直角三角形.關(guān)鍵是利用互余關(guān)系證明相似三角形.


提示:

相似三角形的判定與性質(zhì);矩形的性質(zhì);解直角三角形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、如圖,在矩形ABCD中,點(diǎn)E是BC上一點(diǎn),AE=AD,DF⊥AE,垂足為F.線段DF與圖中的哪一條線段相等?先將你猜想出的結(jié)論填寫(xiě)在下面的橫線上,然后再加以證明.即DF=
AB
.(寫(xiě)出一條線段即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖所示,在矩形ABCD中,點(diǎn)E在BC上,AE=AD,DF⊥AE于F,若AB=3,BC=5,則四邊形DFEC的面積是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在邊AD,BC上,BE⊥EF,AB=6cm,AD=11cm(其中AE>DE),DF=4cm,求BE的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,點(diǎn)P在矩形ABCD內(nèi),若AB=4,BC=6,AE=CG=3,BF=DH=4,四邊形AEPH的面積為5,求四邊形PFCG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州)如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過(guò)點(diǎn)A作AP的垂線與CB的延長(zhǎng)線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化.當(dāng)點(diǎn)M落在矩形ABCD外部時(shí),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案