6.如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°
②△DEF∽△ABG
③S△ABG=32S△FGH
④AG+DF=FG
其中正確的個(gè)數(shù)為( 。
A.1B.2C.3D.4

分析 由折疊性質(zhì)得∠1=∠2,CE=FE,BF=BC=10,則在Rt△ABF中利用勾股定理可計(jì)算出AF=8,所以DF=AD-AF=2,設(shè)EF=x,則CE=x,DE=CD-CE=6-x,在Rt△DEF中利用勾股定理得(6-x)2+22=x2,解得x=$\frac{10}{3}$,即ED=$\frac{8}{3}$;再利用折疊性質(zhì)得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可對(duì)①進(jìn)行判斷;設(shè)AG=y,則GH=y,GF=8-y,在Rt△HGF中利用勾股定理得到y(tǒng)2+42=(8-y)2,解得y=3,則AG=GH=3,GF=5,由于∠A=∠D和 $\frac{AB}{DE}$≠$\frac{AG}{DF}$,可判斷△ABG與△DEF不相似,則可對(duì)②進(jìn)行判斷;根據(jù)三角形面積公式可對(duì)③進(jìn)行判斷;利用AG=3,GF=5,DF=2可對(duì)④進(jìn)行判斷.

解答 解:∵△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處,
∴∠1=∠2,CE=FE,BF=BC=10,
在Rt△ABF中,∵AB=6,BF=10,
∴AF=$\sqrt{1{0}^{2}-{6}^{2}}$=8,
∴DF=AD-AF=10-8=2,
設(shè)EF=x,則CE=x,DE=CD-CE=6-x,
在Rt△DEF中,∵DE2+DF2=EF2,
∴(6-x)2+22=x2,解得x=$\frac{10}{3}$,
∴ED=$\frac{8}{3}$,
∵△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,
∴∠3=∠4,BH=BA=6,AG=HG,
∴∠2+∠3=$\frac{1}{2}$∠ABC=45°,所以①正確;
HF=BF-BH=10-6=4,
設(shè)AG=y,則GH=y,GF=8-y,
在Rt△HGF中,∵GH2+HF2=GF2,
∴y2+42=(8-y)2,解得y=3,
∴AG=GH=3,GF=5,
∵∠A=∠D,$\frac{AB}{DE}$=$\frac{6}{\frac{8}{3}}$=$\frac{9}{4}$,$\frac{AG}{DF}$=$\frac{3}{2}$,
∴$\frac{AB}{DE}$≠$\frac{AG}{DF}$,
∴△ABG與△DEF不相似,所以②錯(cuò)誤;
∵S△ABG=$\frac{1}{2}$•6•3=9,S△FGH=$\frac{1}{2}$•GH•HF=$\frac{1}{2}$×3×4=6,
∴S△ABG=$\frac{3}{2}$S△FGH,所以③錯(cuò)誤;
∵AG+DF=3+2=5,而GF=5,
∴AG+DF=GF,所以④正確.
∴①④正確.
故選B.

點(diǎn)評(píng) 本題考查的是相似三角形的判定與性質(zhì),熟練掌握折疊和矩形的性質(zhì)、相似三角形的判定方法;會(huì)運(yùn)用勾股定理計(jì)算線段的長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,已知圓柱底面周長(zhǎng)是4dm,圓柱的高為3dm,在圓柱的側(cè)面上,過(guò)點(diǎn)A和點(diǎn)C嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為2$\sqrt{13}$dm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)先化簡(jiǎn),再求值:3(2a2b-ab2)-5(a2b-ab2),其中a=-2,b=1.
(2)解方程:$\frac{3x+4}{2}$-1=$\frac{7-2x}{12}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某商品在元旦假日準(zhǔn)備開(kāi)展促銷活動(dòng),商品的標(biāo)價(jià)為1000元,4折銷售后任可賺80元,則該商品的成本價(jià)為( 。
A.400元B.440元C.320元D.270元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.解方程:$\frac{3}{x}$-$\frac{x}{x-1}$=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在直角△ABC中,∠ACB=90°,BC的垂直平分線MN交BC于點(diǎn)D,交AB于點(diǎn)E,CF∥AB交MN于點(diǎn)F,連接CE、BF.
(1)求證:△BED≌△CFD;
(2)求證:四邊形BECF是菱形.
(3)當(dāng)∠A滿足什么條件時(shí),四邊形BECF是正方形,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知A、B、C三點(diǎn)在同一條直線上,AB=8,BC=2,M、N分別為AB、BC中點(diǎn),求線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算:
(1)(-$\frac{3}{4}$+$\frac{7}{12}$-$\frac{5}{8}$)×(-24);
(2)-14+2×(-3)2-5÷$\frac{1}{2}$×2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知二次函數(shù) y=ax2+bx+c (a≠0)的圖象如圖所示,則下列結(jié)論:
①abc<0;?②b2-4ac<0;?③2a+b>0;④a-b+c<0,其中正確的個(gè)數(shù)( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案