如圖:平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A的坐標為(-3,4),點C在x軸的正半軸上,直線AC交y軸于點M,AB邊交y軸于點H,連接BM.
(1)求直線AC的解析式;
(2)動點P從點A出發(fā),沿折線ABC方向 以2個單位/秒的速度向終點C勻速運動,設△PMA的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,是否存在這樣的點P,使得∠MPB與∠BCO互為余角?若存在,請直接寫出所有符合條件的點P的坐標.

解:(1)過點A作AE⊥x軸垂足為E,如圖(1)
∵A(-3,4),
∴AE=4 OE=3,
∴OA==5,
∵四邊形ABCO為菱形,
∴OC=CB=BA=0A=5,
∴C(5,0)
設直線AC的解析式為:y=kx+b,則
,
解得:
∴直線AC的解析式為:y=-x+;

(2)由(1)得M點坐標為(0,),
∴OM=,
如圖(1),當P點在AB邊上運動時
由題意得OH=4,
∴HM=OH-OM=4-=
∴s=BP•MH=(5-2t)•,
∴s=-t+(0≤t<),
當P點在BC邊上運動時,記為P1
在△OMC和△BMC中

∴△OMC≌△BMC(SAS),
∴OM=BM=,∠MOC=∠MBC=90°,
∴S=P1B•BM=(2t-5)×,
∴S=t-<t≤5);

(3)∵∠AOC=∠ABC,
∴∠AOM=∠ABM,
∵∠MPB+∠BCO=90°,∠BAO=∠BCO,∠BAO+∠AOH=90°,
∴∠MPB=∠AOH,
∴∠MPB=∠MBH.
當P點在AB邊上運動時,如圖(2)
∵∠MPB=∠MBH,
∴PM=BM,
∵MH⊥PB,
∴PH=HB=2,
∴PA=AH-PH=1,
∴此時P點坐標為:(-2,4);
當P點在BC邊上運動時,如圖(3),過點P作PN⊥CO于點N,
∵∠BHM=∠PBM=90°,∠MPB=∠MBH,
∴tan∠MPB=tan∠MBH,
=
=,
∴BP=,
∴PC=BC-BP=5-=,
==,
∴PN=,NC=1,
∴NO=4,
∴P點坐標為:(4,),
綜上所述:P點坐標為:(-2,4);(4,).
分析:(1)已知A點的坐標,就可以求出OA的長,根據(jù)OA=OC,就可以得到C點的坐標,根據(jù)待定系數(shù)法就可以求出函數(shù)解析式.
(2)點P的位置應分P在AB和BC上,兩種情況進行討論.當P在AB上時,△PMB的底邊PB可以用時間t表示出來,高是MH的長,因而面積就可以表示出來,再利用當P點在BC邊上運動時,表示出P1B,BM長即可得出答案;
(3)本題可以分兩種情況進行討論,當P點在AB邊上運動時;當P點在BC邊上運動時,分別得出P點坐標即可.
點評:本題主要考查了利用待定系數(shù)法求函數(shù)的解析式以及全等三角形的判定與性質(zhì)和銳角三角函數(shù)的關(guān)系應用,利用分類討論的思想得出是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平面直角坐標系中,O為直角三角形ABC的直角頂點,∠B=30°,銳角頂點A在雙曲線y=
1x
上運動,則B點在函數(shù)解析式
 
上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB精英家教網(wǎng)=2
3

(1)求⊙P的半徑.
(2)將⊙P向下平移,求⊙P與x軸相切時平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平面直角坐標系中,OB在x軸上,∠ABO=90°,點A的坐標為(1,2).將△AOB繞點A逆時針旋轉(zhuǎn)90°,則點O的對應點C的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:平面直角坐標系中,△ABC的三個頂點的坐標為A(a,0),B(b,0),C(0,c),且a,b,c滿足
a+2
+|b-2|+(c-b)2=0
.點D為線段OA上一動點,連接CD.
(1)判斷△ABC的形狀并說明理由;
(2)如圖,過點D作CD的垂線,過點B作BC的垂線,兩垂線交于點G,作GH⊥AB于H,求證:
S△CAD
S△DGH
=
AD
GH

(3)如圖,若點D到CA、CO的距離相等,E為AO的中點,且EF∥CD交y軸于點F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖在平面直角坐標系中,A點坐標為(8,0),B點坐標為(0,6)C是線段AB的中點.請問在y軸上是否存在一點P,使得以P、B、C為頂點的三角形與△AOB相似?若存在,求出P點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案