【題目】已知關(guān)于x的一元二次方程x2+ax﹣(m﹣1)(m+2)=0,對于任意實數(shù)a都有實數(shù)根,則m的取值范圍是

【答案】m≤﹣2或m≥1
【解析】解:∵關(guān)于x的一元二次方程x2+ax﹣(m﹣1)(m+2)=0,對于任意實數(shù)a都有實數(shù)根, ∴△=a2+4(m﹣1)(m+2)≥0,
∴只要4(m﹣1)(m+2)≥0,方程一定有實數(shù)根,
解得:m≤﹣2或m≥1.
所以答案是m≤﹣2或m≥1.
【考點精析】認(rèn)真審題,首先需要了解求根公式(根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖北襄陽第24題)

如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.

(1)求證:四邊形EFDG是菱形;

(2)探究線段EG,GF,AF之間的數(shù)量關(guān)系,并說明理由;

(3)若AG=6,EG=2,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x+b,分別交x軸,y軸于點A、C,點P是直線AC與雙曲線y=在第一象限內(nèi)的交點,過點P作PB⊥x軸于點B,若OB=2,PB=3.

(1)填空:k=   ;

(2)求△ABC的面積;

(3)求在第一象限內(nèi),當(dāng)x取何值時,一次函數(shù)的值小于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.

(1)若∠ABC=70°,則∠MNA的度數(shù)是  

(2)連接NB,若AB=8cm,△NBC的周長是14cm.

①求BC的長;

②在直線MN上是否存在P,使由P、B、C構(gòu)成的△PBC的周長值最?若存在,標(biāo)出點P的位置并求△PBC的周長最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋擲1枚均勻硬幣正面朝上是(

A.必然事件B.不可能事件C.隨機事件D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算中,正確的是( )
A.4x-x=2x
B.2x·x4=x5
C.x2y÷y=x2
D.(-3x)3=-9x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016寧夏第24題)如圖,RtABO的頂點O在坐標(biāo)原點,點B在x軸上,ABO=90°AOB=30°,OB=2,反比例函數(shù)y=(x>0)的圖象經(jīng)過OA的中點C,交AB于點D.

(1)求反比例函數(shù)的關(guān)系式;

(2)連接CD,求四邊形CDBO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若代數(shù)式2x2﹣4x﹣5的值為7,則x2﹣2x﹣2的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1的坐標(biāo)為(1,0),A2在y軸的正半軸上,且∠A1A2O=30°,過點A2作A2A3⊥A1A2,垂足為A2,交x軸于點A3;過點A3作A3A4⊥A2A3,垂足為A3,交y軸于點A4;過點A4作A4A5⊥A3A4,垂足為A4,交x軸于點A5;過點A5作A5A6⊥A4A5,垂足為A5,交y軸于點A6;…按此規(guī)律進(jìn)行下去,則點A2016的縱坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案