已知△ABC的兩邊AB、AC的長是關于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的兩個實數(shù)根,第三邊BC=5.
(1)k為何值時,△ABC是以BC為斜邊的直角三角形?
(2)k為何值時,△ABC是等腰三角形?并求此時△ABC的周長.
解:(1)根據(jù)題意得
[x-(k+1)][x-(k+2)]=0,
解得,x1=k+1,x2=k+2,
若△ABC是直角三角形,且BC是斜邊,
那么有(k+1)2+(k+2)2=52,
解得k1=2,k2=-5(不合題意舍去),
∴k=2;
(2)①如果AB=AC,△=(2k+3)2-4(k2+3k+2)=0
4k2+12k+9-4k2-12k-8=1≠0,
不可能是等腰三角形.
②如果AB=5,或者AC=5
x1=5,52-(2k+3)×5+k2+3k+2=0
k2-7k+12=0
(k-4)(k-3)=0
k=4或者k=3
k=4時:
x2-11x+30=0
(x-5)(x-6)=0,∴AB=5,AC=6周長L=5+5+6=16
k=3時:
x2-9x+20=0
(x-4)(x-5)=0,∴AB=4,AC=5,周長L=4+5+5=14.
分析:(1)先解方程可得x1=k+1,x2=k+2,若△ABC是直角三角形,且BC是斜邊,那么有(k+1)2+(k+2)2=52,易求k,結合實際意義可求k的值;
(2)由(1)得x1=k+1,x2=k+2,若△ABC是等腰三角形,則x1=BC或x2=BC,易求k=4或3,再分兩種情況求周長.
點評:本題考查了勾股定理、等腰三角形的判定、解方程.解題的關鍵是注意分情況討論.