【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣2mx+m+4與y軸交于點A(0,3),與x軸交于點B,C(點B在點C左側(cè)).
(1)求該拋物線的表達式及點B,C的坐標;
(2)拋物線的對稱軸與x軸交于點D,若直線y=kx+b經(jīng)過點D和點E(﹣1,﹣2),求直線DE的表達式;
(3)在(2)的條件下,已知點P(t,0),過點P作垂直于x軸的直線交拋物線于點M,交直線DE于點N,若點M和點N中至少有一個點在x軸下方,直接寫出t的取值范圍.
【答案】(1),B(-1,0),C(3,0);(2)y=x-1;(3)或.
【解析】
試題(1)由拋物線與y軸交于點A(0,3),把A點坐標代入解析式可得出m的值,即求出拋物線的解析式,然后拋物線與軸交于點B、C兩點,即可求出B、C兩點的坐標;(2)
(2)由求出點D的坐標,將D和E的點代入直線的解析式,即可求出直線DE的表達式;
(3)根據(jù)圖像即可直接寫出的取值范圍.
試題解析:解:(1)∵拋物線與y軸交于點A(0,3),
∴m+4=3.
∴m=-1.
∴拋物線的表達式為.
∵拋物線與軸交于點B,C,
∴令y=0,即.
解得,.
又∵點B在點C左側(cè),
∴點B的坐標為,點C的坐標為.
(2)∵,
∴拋物線的對稱軸為直線.
∵拋物線的對稱軸與軸交于點D,
∴點D的坐標為(1,0).
∵直線經(jīng)過點D(1,0)和點E(-1,-2),
∴
解得
∴直線DE的表達式為y=x-1.
(3)或
科目:初中數(shù)學 來源: 題型:
【題目】在校園文化藝術節(jié)中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2015年2月27日,在中央全面深化改革領導小組第十次會議上,審議通過了《中國足球改革總體方案》,體制改革、聯(lián)賽改革、校園足球等成為改革的亮點.在聯(lián)賽方面,作為國內(nèi)最高水平的聯(lián)賽﹣﹣中國足球超級聯(lián)賽今年已經(jīng)進入第12個年頭,中超聯(lián)賽已經(jīng)引起了世界的關注.圖9是某一年截止倒數(shù)第二輪比賽各隊的積分統(tǒng)計圖.
(1)根據(jù)圖,請計算該年有_____支中超球隊參賽;
(2)補全圖一中的條形統(tǒng)計圖;
(3)根據(jù)足球比賽規(guī)則,勝一場得3分,平一場得1分,負一場得0分,最后得分最高者為冠軍.倒數(shù)第二輪比賽后積分位于前4名的分別是A隊49分,B隊49分,C隊48分,D隊45分.在最后一輪的比賽中,他們分別和第4名以后的球隊進行比賽,已知在已經(jīng)結束的一場比賽中,A隊和對手打平.請用列表或者畫樹狀圖的方法,計算C隊奪得冠軍的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與雙曲線交于點A,過點作AO的平行線交雙曲線于點B,連接AB并延長與y軸交于點,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿角平分線BD所在直線翻折,頂點A恰好落在邊BC的中點E處,AE=BD,那么tan∠ABD=( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,反比例函數(shù)y=(x<0)的圖象經(jīng)過矩形OABC的對角線AC的中點M,分別與AB,BC交于點D、E,若BD=3,OA=4,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出
(1)如圖①,在△ABC中,∠A=120°,AB=AC=5,則△ABC的外接圓半徑R的值為 .
問題探究
(2)如圖②,⊙O的半徑為13,弦AB=24,M是AB的中點,P是⊙O上一動點,求PM的最大值.
問題解決
(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,∠BAC=60°,BC所對的圓心角為60°.新區(qū)管委會想在BC路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F.也就是,分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點與所在道路之間的距離、路寬均忽略不計).
圖① 圖② 圖③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 在矩形ABCD中,AB=3,AD=4,點P為AB邊上的動點(P與A、B不重合),將△BCP沿CP翻折,點B的對應點B1在矩形外,PB1交AD于E,CB1交AD于點F.
(1)如圖1,求證:△APE∽△DFC;
(2)如圖1,如果EF=PE,求BP的長;
(3)如圖2,連接BB′交AD于點Q,EQ:QF=8:5,求tan∠PCB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com