在平面直角坐標系中,點A(﹣3,4)關(guān)于y軸的對稱點為點B,連接AB,反比例函數(shù)(x>0)的圖象經(jīng)過點B,過點B作BC⊥x軸于點C,點P是該反比例函數(shù)圖象上任意一點,過點P作PD⊥x軸于點D,點Q是線段AB上任意一點,連接OQ、CQ.
(1)求k的值;
(2)判斷△QOC與△POD的面積是否相等,并說明理由.
(1)k=12。
(2)相等。理由見解析
【解析】
試題分析:(1)根據(jù)點B與點A關(guān)于y軸對稱,求出B點坐標,再代入反比例函數(shù)解析式解可求出k的值;
(2)設(shè)點P的坐標為(m,n),點P在反比例函數(shù)(x>0)的圖象上,求出S△POD,根據(jù)AB∥x軸,OC=3,BC=4,點Q在線段AB上,求出S△QOC,二者比較即可!
解:(1)∵點B與點A關(guān)于y軸對稱,A(﹣3,4),
∴點B的坐標為(3,4)。
∵反比例函數(shù)(x>0)的圖象經(jīng)過點B,
∴,解得k=12。
(2)相等。理由如下:
設(shè)點P的坐標為(m,n),其中m>0,n>0,
∵點P在反比例函數(shù)(x>0)的圖象上,
∴,即mn=12!郤△POD=OD•PD=mn=×12=6。
∵A(﹣3,4),B(3,4),∴AB∥x軸,OC=3,BC=4。
∵點Q在線段AB上,∴S△QOC=OC•BC=×3×4=6。
∴S△QOC=S△POD。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com