【題目】如圖所示,在△ABC中,∠BAC=90°,AB⊥AC,AB=3,BC=5,EF垂直平分BC,點P為直線EF上的任一點,則AP+BP的最小值是

【答案】4
【解析】首先根據(jù)Rt△ABC的勾股定理可得:AC=4,根據(jù)對稱圖形的性質(zhì)可得:BP=CP,即AP+BP=AP+CP,則當A、P、C三點共線時,AP+CP最小,就是AP+BP最。


【考點精析】關于本題考查的線段垂直平分線的性質(zhì)和勾股定理的概念,需要了解垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知2a5,2b3,求2a+b的值為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面的多項式中,能因式分解的是( )

A. m2+n2B. m2+4m+1C. m2-nD. m2-2m+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等腰三角形一腰上的高與底邊的夾角為n°,則這個等腰三角形頂角等于________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:x2﹣x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】德國《時代》周報網(wǎng)站列舉了數(shù)據(jù)來評價中國改革開放40年的成就,在2017年我國申報了8330項國際專利,目前在年度國際專利申請量排名中位居第五,8330用科學記數(shù)法表示為( 。

A. 0.833×104B. 83.3×103C. 8.33×103D. 8.33×104

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B均在邊長為1的正方形網(wǎng)格格點上.

(1)在網(wǎng)格的格點中,找一點C,使△ABC是直角三角形,且三邊長均為無理數(shù)(只畫出一個,并涂上陰影);
(2)若點P在圖中所給網(wǎng)格中的格點上,△APB是等腰三角形,滿足條件的點P共有個;
(3)若將線段AB繞點A順時針旋轉(zhuǎn)90°,寫出旋轉(zhuǎn)后點B的坐標

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為﹣1和﹣4,且拋物線過原點.

(1)求拋物線的解析式;

(2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;

(3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若S△BGF=3S△EFP,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學團委會為研究該校學生的課余活動情況,采取抽樣的方法,從閱讀、運動、娛樂、其它等四個方面調(diào)查了若干名學生的興趣愛好,并將調(diào)查的結(jié)果繪制了如下的兩幅不完整的統(tǒng)計圖(如圖1,圖2),請你根據(jù)圖中提供的信息解答下列問題:

(1)在這次研究中,一共調(diào)查了多少名學生?

(2)“其它”在扇形圖中所占的圓心角是多少度?

(3)補全頻數(shù)分布折線圖.

查看答案和解析>>

同步練習冊答案