如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點(diǎn),DE,AB相交于點(diǎn)G,若∠BAC=300,下列結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號(hào)是( ▲ )

A. ②④    B. ①③   C. ①③④   D. ①②③④                                                                              

 

【答案】

C

【解析】∵ACE是等邊三角形∴∠EAC=60°,AE=AC ∵∠BAC=30°

∴∠FAE=∠ACB=90°,AB=2BC ∵F為AB的中點(diǎn) ∴AB=2AF ∴BC=AF

∴△ABC≌△EFA  ∴∠AEF=∠BAC=30° ∴EF⊥AC.故①是正確的;

∵△ABC≌△EFA ∴EF=AB ∵AB=AD ∴AD=EF 同理可證AE=DF

 ∴ADFE是平行四邊形∵F為AB的中點(diǎn)∴△AFD是直角三角形,AD≠DF.

因此四邊形ADFE不是菱形.故②不正確;

∵ADFE是平行四邊形∴AG=AF=AB∵AD=AB∴AD=4AG.故③是正確的;

∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,

∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,

∴△DBF≌△EFA(AAS).故④是正確的.故選C.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點(diǎn),DE,AB相交于點(diǎn)G,若∠BAC=30°,下列結(jié)論:①EF⊥AC;②四邊形ADFE為平行四邊形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,分別以Rt△ABC三邊為直徑向外作三個(gè)半圓,其面積分別用S1,S2,S3表示,則不難證明S1=S2+S3
(1)如圖②,分別以Rt△ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1,S2,S3表示,寫(xiě)出它們的關(guān)系;(不必證明)
(2)如圖③,分別以Rt△ABC三邊為邊向外作正三角形,其面積分別用S1,S2,S3表示,確定它們的關(guān)系并證明;
(3)若分別以Rt△ABC三邊為邊向外作三個(gè)一般三角形,其面積分別用S1,S2,S3表示,為使S1,S2,S3之間仍具有與(2)相同的關(guān)系,所作三角形應(yīng)滿足什么條件?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點(diǎn),連接DF、EF、DE,EF與AC交于點(diǎn)O,DE與AB交于點(diǎn)G,連接OG,若∠BAC=30°,下列結(jié)論:
①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.
其中正確結(jié)論的序號(hào)是( 。
A、①②③B、①④⑤C、①③⑤D、①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,分別以Rt△ABC的斜邊AB、直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB中點(diǎn),連接DF、EF,DE、EF與AC交于點(diǎn)O,DE與AB交于點(diǎn)G,連接OG,若∠BAC=30°,下列結(jié)論:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG與△EOG的面積比為1:4.其中正確的結(jié)論的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,分別以Rt△ABC三邊為邊向外作三個(gè)正方形,其面積分別用S1、S2、S3表示,容易得出S1、S2、S3之間有的關(guān)系式
S1=S2+S3
S1=S2+S3

查看答案和解析>>

同步練習(xí)冊(cè)答案