如圖,直線l1與l2相交于點P,l1的函數(shù)表達式y(tǒng)=kx+b,且經過(1,7)和(-3,-1)兩點,點P的橫坐標為-1,且l2交y軸于點A(0,-1).
(1)求直線l2的函數(shù)表達式.
(2)若點(a,2)在直線L2圖象上,求a的值.

解:(1)∵直線y=kx+b經過(1,7)和(-3,-1),

解得
∴l(xiāng)1的函數(shù)表達式為y=2x+5,
∵直線l1與l2相交于點P,點P的橫坐標為-1,
∴2×(-1)+5=-2+5=3,
∴點P的坐標為(-1,3),
設直線l2的函數(shù)表達式為y=mx+n,
,
解得,
∴l(xiāng)2的函數(shù)表達式為y=-4x-1;

(2)∵點(a,2)在直線L2圖象上,
∴-4a-1=2,
解得a=-
分析:(1)利用待定系數(shù)法列式求出l1的函數(shù)表達式,然后求出點P的坐標,再利用待定系數(shù)法列式求解即可;
(2)把點(a,2)代入直線解析式,解方程即可.
點評:本題考查了兩直線相交的問題,待定系數(shù)法求直線解析式,先求出l1的函數(shù)表達式,從而求出點P的坐標是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,直線l1與l2相交于點P,l1的函數(shù)表達式為y=2x+3,點P的橫坐標為-1,且l2交y軸于點A(0,-1).求直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線l1與l2相交于點O,OM⊥l1,若∠α=44°,則∠β等于
46°
46°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•裕華區(qū)二模)如圖,直線l1與l2相交于點P,點P橫坐標為-1,l1的解析表達式為y=
1
2
x+3,且l1與y軸交于點A,l2與y軸交于點B,點A與點B恰好關于x軸對稱.
(1)求點B的坐標;
(2)求直線l2的解析表達式;
(3)若點M為直線l2上一動點,直接寫出使△MAB的面積是△PAB的面積的
1
2
的點M的坐標;
(4)當x為何值時,l1,l2表示的兩個函數(shù)的函數(shù)值都大于0?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線l1與l2相交于點O,AO⊥l1,若∠1=50°,則∠2的度數(shù)為
40°
40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線l1與l2相交于點P,l1的函數(shù)表達式y(tǒng)=kx+b,且經過(1,7)和(-3,-1)兩點,點P的橫坐標為-1,且l2交y軸于點A(0,-1).
(1)求直線l2的函數(shù)表達式.
(2)若點(a,2)在直線L2圖象上,求a的值.

查看答案和解析>>

同步練習冊答案