(2002•崇文區(qū))如圖,菱形ABCD的邊長為5,AC、BD相交于點(diǎn)O,AC=6,若∠ABD=α,則下列式子正確的是( )

A.sinα=
B.cosα=
C.tanα=
D.cotα=
【答案】分析:根據(jù)已知及菱形的性質(zhì)求△AOB三邊的長,根據(jù)三角函數(shù)的定義對各個選項進(jìn)行驗證,從而得到最后答案.
解答:解:∵ABCD是菱形,AB=5,AC=6,
∴AO=3,∴BO=4.
∴sinα==;cosα==;tanα==;cotα==
故選D.
點(diǎn)評:本題主要考查了菱形的性質(zhì)及三角函數(shù)的定義的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2002•崇文區(qū))如圖,在梯形ABCD中,DC∥AB,將梯形對折,使點(diǎn)D、C分別落在AB上的D′、C′處,折痕為EF,若CD=3cm,EF=4cm,則AD′+BC′=
2
2
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2002•崇文區(qū))已知:在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與y軸交于點(diǎn)C(0,4),與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),tan∠BCO=,且S△AOC:S△BOC=4:1.求:此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2002•崇文區(qū))已知直線y=kx+b經(jīng)過點(diǎn)(3,-1)和點(diǎn)(-6,5),k=    ,b=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年北京市崇文區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•崇文區(qū))已知:在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c與y軸交于點(diǎn)C(0,4),與x軸交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè),tan∠BCO=,且S△AOC:S△BOC=4:1.求:此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年北京市崇文區(qū)中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2002•崇文區(qū))已知直線y=kx+b經(jīng)過點(diǎn)(3,-1)和點(diǎn)(-6,5),k=    ,b=   

查看答案和解析>>

同步練習(xí)冊答案