【題目】小明家2015年的四個季度的用電量情況如表1,其中各種電器用電量情況如表2.

1

2

季度名稱

用電量/

電器

用電量/

第一季度

250

空調(diào)

250

第二季度

150

冰箱

400

第三季度

400

彩電

150

第四季度

200

其他

100

小明根據(jù)上面的數(shù)據(jù)制成如圖所示的統(tǒng)計圖.

根據(jù)以上三幅統(tǒng)計圖回答下列問題:

(1)從哪幅統(tǒng)計圖中可以看出各季度用電量變化情況?

(2)從哪幅統(tǒng)計圖中可以看出冰箱的用電量超過總用電量的?

(3)從哪幅統(tǒng)計圖中可以清楚地看出空調(diào)的用電量?

【答案】(1)折線統(tǒng)計圖.(2)扇形統(tǒng)計圖.(3)條形統(tǒng)計圖.

【解析】

1)折線統(tǒng)計圖表示的是事物的變化情況;

2)扇形統(tǒng)計圖直接反映部分占總體的百分比大;

3)條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).

1)各種季度用電量變化情況就是要知道事物的變化情況,所以從折線統(tǒng)計圖可以看出;

2)冰箱用電量超過總用電量的就是要知道部分占總體的百分比大小,所以從扇形統(tǒng)計圖可以看出;

3)空調(diào)的用電量就是要知道項目的數(shù)據(jù),所以從條形統(tǒng)計圖可以看出.

故答案為折線統(tǒng)計圖、扇形統(tǒng)計圖、條形統(tǒng)計圖.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若自然數(shù)使得三個數(shù)的加法運(yùn)算產(chǎn)生進(jìn)位現(xiàn)象,則稱連加進(jìn)位數(shù).例如:2不是連加進(jìn)位數(shù),因為不產(chǎn)生進(jìn)位現(xiàn)象;4連加進(jìn)位數(shù),因為產(chǎn)生進(jìn)位現(xiàn)象;51連加進(jìn)位數(shù),因為產(chǎn)生進(jìn)位現(xiàn)象.如果從01,2,99100個自然數(shù)中任取一個數(shù),取到連加進(jìn)位數(shù)的個數(shù)有( )個

A.88B.89C.90D.91

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片中,,,折疊紙片使點(diǎn)落在邊上的處,折痕為.過點(diǎn),連接.

1)求證:四邊形為菱形;

2)當(dāng)點(diǎn)邊上移動時,折痕的端點(diǎn),也隨之移動.

①當(dāng)點(diǎn)與點(diǎn)重合時(如圖),求菱形的邊長;

②若限定,分別在邊,上移動,求出點(diǎn)在邊上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班組織班級聯(lián)歡會,最后進(jìn)入抽獎環(huán)節(jié),每名同學(xué)都有一次抽獎機(jī)會,抽獎方案如下:將一副撲克牌中點(diǎn)數(shù)為“2”、“3”、“3”、“5”、“6”的五張牌背面朝上洗勻,先從中抽出1張牌,再從余下的4張牌中抽出1張牌,記錄兩張牌點(diǎn)數(shù)后放回,完成一次抽獎。記每次抽出兩張牌點(diǎn)數(shù)之差為x,按表格要求確定獎項.

獎項

一等獎

二等獎

三等獎

(1)用列表或畫樹狀圖的方法求出某同學(xué)抽一次獎獲一等獎的概率;

(2)抽一次獎獲一等獎的概率和不獲獎的概率相等嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點(diǎn)坐標(biāo)為,并且與軸交于點(diǎn),與軸交于、兩點(diǎn).

)求拋物線的表達(dá)式.

)如圖,設(shè)拋物線的對稱軸與直線交于點(diǎn),點(diǎn)為直線上一動點(diǎn),過點(diǎn)軸的平行線,與拋物線交于點(diǎn),問是否存在點(diǎn),使得以、、為頂點(diǎn)的三角形與相似.若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售每臺進(jìn)價分別為180元、150元的甲、乙兩種型號的電器,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

甲種型號

乙種型號

第一周

2

3

1100

第二周

4

5

2000

(進(jìn)價、售價均保持不變,利潤=銷售收入-進(jìn)貨成本)

1)求甲、乙兩種型號的電器的銷售單價;

2)若超市準(zhǔn)備用不多于5000元的金額再采購這兩種型號的電器共30臺,求甲種型號的電器最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電器能否實現(xiàn)利潤超過1900元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角邊分別為34的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,依次類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為,,,…, ,則= .

查看答案和解析>>

同步練習(xí)冊答案