【題目】如圖,正方形ABCD中,點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),CE、DF交于G,連接AG、HG.下列結(jié)論:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】D
【解析】
連接AH,由四邊形ABCD是正方形與點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),易證得△BCE≌△CDF與△ADH≌△DCF,根據(jù)全等三角形的性質(zhì),易證得CE⊥DF與AH⊥DF,根據(jù)垂直平分線的性質(zhì),即可證得AG=AD,由直角三角形斜邊上的中線等于斜邊的一半,即可證得HG=AD,根據(jù)等腰三角形的性質(zhì),即可得∠CHG=∠DAG.則問題得解.
解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵點(diǎn)E、F、H分別是AB、BC、CD的中點(diǎn),
∴BE=CF,
在△BCE與△CDF中,
∴△BCE≌△CDF,(SAS),
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF,故①正確;
在Rt△CGD中,H是CD邊的中點(diǎn),
∴HG=CD=AD,故④正確;
連接AH,
同理可得:AH⊥DF,
∵HG=HD=CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD,故②正確;
∴∠DAG=2∠DAH,
同理:△ADH≌△DCF,
∴∠DAH=∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠CHG=∠DAG.故③正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為弘揚(yáng)中國傳統(tǒng)詩詞文化,在九年級隨機(jī)抽查了若干名學(xué)生進(jìn)行測試,然后把測試結(jié)果分為4個(gè)等級;A、B、C、D,對應(yīng)的成績分別是9分、8分、7分、6分,并將統(tǒng)計(jì)結(jié)果繪制成兩幅如圖所示的統(tǒng)計(jì)圖.請結(jié)合圖中的信息解答下列問題:
(1)本次抽查測試的學(xué)生人數(shù)為 ,圖①中的a的值為 ;
(2)求統(tǒng)計(jì)所抽查測試學(xué)生成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+m交雙曲線y=(x>0)于A、B兩點(diǎn),交x軸于點(diǎn)C,交y軸于點(diǎn)D,過點(diǎn)A作AH⊥x軸于點(diǎn)H,連結(jié)BH,若OH:HC=1:5,S△ABH=1,則k的值為( 。
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,原點(diǎn)O是矩形OABC的一個(gè)頂點(diǎn),點(diǎn)A、C都
在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)是(4.2),反比例函數(shù)與AB,BC分別交于點(diǎn)D,E。
(1)求直線DE的解析式;
(2)若點(diǎn)F為y軸上一點(diǎn),△OEF和△ODE的面積相等,求點(diǎn)F的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了調(diào)查學(xué)生對教學(xué)的滿意度,隨機(jī)抽取了部分學(xué)生作問卷調(diào)查:用“”表示“很滿意”,“”表示“滿意”,“”表示“比較滿意”,“”表示“不滿意”,下圖是工作人員根據(jù)問卷調(diào)查統(tǒng)計(jì)資料繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問題:
(1)本次問卷調(diào)查,共調(diào)查了多少名學(xué)生?
(2)將圖甲中“”部分的圖形補(bǔ)充完整;
(3)求出圖乙中扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知PA=PB=PC=2,∠BPC=120°,PA∥BC.以AB、PB為邊作平行四邊形ABPD,連接CD,則CD的長為( 。
A. B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在8×8的正方形網(wǎng)格中,△ABC的頂點(diǎn)在邊長為1的小正方形的頂點(diǎn)上
(1) 填空∠ABC=___________
(2) 若點(diǎn)A在網(wǎng)格所在的坐標(biāo)平面內(nèi)的坐標(biāo)為(1,-2),請建立平面直角坐標(biāo)系,D是平面直角坐標(biāo)系中一點(diǎn),并作出以A、B、C、D四個(gè)點(diǎn)為頂點(diǎn)的平行四邊形,直接寫出滿足條件的D點(diǎn)的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(-4,m),B(-1,n),平移后的對應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,O是對角線AC的中點(diǎn).將ABCD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°.旋轉(zhuǎn)后的四邊形為A'B′C′D',點(diǎn)A,C,D,O的對應(yīng)點(diǎn)分別為A′,C',D',O’,若AB=8,BC=10,則線段CO’的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com