【題目】如圖,在矩形ABCD中,O是對角線AC的中點.將ABCD繞點B順時針旋轉(zhuǎn)90°.旋轉(zhuǎn)后的四邊形為A'B′C′D',點A,C,D,O的對應(yīng)點分別為A′,C',D',O’,若AB=8,BC=10,則線段CO’的長為_____.
【答案】
【解析】
過點O′作O′M⊥BC于點M,利用旋轉(zhuǎn)的性質(zhì)及三角形中線的性質(zhì)可得MO′,BM的長度,從而可得CM的長度,在Rt△CO′M中,利用勾股定理即可求出答案.
解:過點O′作O′M⊥BC于點M,
∵將ABCD繞點B順時針旋轉(zhuǎn)90°到四邊形為A'B′C′D'位置,AB=8,BC=10,
∴BC′=BC=10,∠CBE=90°,BA′=AB=8,
∴O′M∥BC′,
∵O是對角線AC的中點,
∴O′是A′C′的中點,
∴MO′=BC′=5,BM=A′M=BA′=4,
∴CM=BC﹣BM=10﹣4=6,
在Rt△CO′M中,CO′=
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F、H分別是AB、BC、CD的中點,CE、DF交于G,連接AG、HG.下列結(jié)論:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,AB=OB,E為AC上一點,BE平分∠ABO,EF⊥BC于點F,∠CAD=45°,EF交BD于點P,BP=,則BC的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.
(1)求證:;
(2)當(dāng)AC=2,CD=1時,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BA=BC=20cm,AC=30cm,點P從A點出發(fā),沿著AB以每秒4cm的速度向B點運動;同時點Q從C點出發(fā),沿CA以每秒3cm的速度向A點運動,設(shè)運動時間為x秒.
(1)當(dāng)CQ=10時,求的值.
(2)當(dāng)x為何值時,PQ∥BC;
(3)是否存在某一時刻,使△APQ∽△CQB?若存在,求出此時AP的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川自貢12分)將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時針旋轉(zhuǎn)45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
(3)如圖③,在B1C上取一點E,連接BE、P1E,設(shè)BC=1,當(dāng)BE⊥P1B時,求△P1BE面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D,下列四個結(jié)論:
①AD是∠BAC的平分線;
②∠ADC=60°;
③點D在AB的中垂線上;
④S△ACD:S△ACB=1:3.
其中正確的有( )
A. 只有①②③ B. 只有①②④ C. 只有①③④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com