如圖,已知點A(-12,0),B(3,0),點C在y軸的正半軸上,且∠ACB=90°.
(1)求點C的坐標(biāo);
(2)求Rt△ACB的角平分線CD所在直線l的解析式;
(3)在l上求出滿足S△PBC=
1
2
S△ABC的點P的坐標(biāo);
(4)已知點M在l上,在平面內(nèi)是否存在點N,使以O(shè)、C、M、N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標(biāo);若不存在.請說明理由.
(1)由△AOC△COB,可得OC2=OA×OB=36,
∴OC=6
又∵點C在y軸的正半軸上,
∴點C的坐標(biāo)是(0,6);

(2)過點D作DE⊥BC于點E.設(shè)DB的長為m.
在Rt△DEB中,DE=DB•sinB=m•
AC
AB
=
2
5
5
m,BE=DB•cosB=
5
5
m
在Rt△DEC中,∠DCE=45°,于是CE=DE=
2
5
5
m
由CE+BE=BC,即
2
5
5
m+
5
5
m=3
5
,解得m=5
又由OA>OB,知點D在線段OA上,OB=3,所以O(shè)D=2,故點D(-2,0);
設(shè)直線l的解析式為:y=kx+b,把C(0,6)和D(-2,0)代入y=kx+b中,
b=6
-2k+b=0
,
解得
k=3
b=6

故直線l的解析式為:y=3x+6;

(3)①取AB的中點F(-4.5,0),過點F作BC的平行線交直線l于點P1,連接CF.
易知S△P1BC=S△FBC=S△ACB,∴點P1為符合題意的點.
直線P1F可由直線BC向左平移BF個單位得到(即向左平移7.5個單位)
而直線BC的解析式為y=-2x+6,

即直線P1F的解的式為y=-2(x+7.5)+6即
y=-2x-9,由
y=-2x-9
y=3x+6
得點P1(-3,-3)
②在直線l上取點P2使CP2=CP1,此時有S△P2BC=S△P1BC=
1
2
S△ACB,∴點符P2合題意.
由CP2=CP1,可得點P2的坐標(biāo)為(3,15),∴點P(-3,-3)或P(3,15)可使S△PBC=
1
2
S△ABC;

(4)當(dāng)OC是菱形的對角線時,OC的中點的坐標(biāo)是(0,3),則把y=3代入l的解析式得:3x+6=3,
解得:x=-1.
則M的坐標(biāo)是(-1,3),N的坐標(biāo)是(1,3);
當(dāng)OC是菱形的一條邊時,點N的坐標(biāo)是(-
18
5
6
5
),(
3
10
5
,
9
10
5
),(-
3
10
5
,-
9
10
5
).
故N的坐標(biāo)是(1,3)或(-
18
5
6
5
)或(
3
10
5
,
9
10
5
)或(-
3
10
5
,-
9
10
5
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某物流公司的快遞車和貨車每天沿同一公路往返于A、B兩地,快遞車比貨車多往返一趟.圖表示快遞車與貨車距離A地的路程y(單位:千米)與所用時間x(單位:時)的函數(shù)圖象.已知貨車比快遞車早1小時出發(fā),到達(dá)B地后用2小時裝卸貨物,然后按原路、原速返回,結(jié)果比快遞車最后一次返回A地晚1小時.
(1)兩車在途中相遇的次數(shù)為______次;(直接填入答案)
(2)求兩車最后一次相遇時,距離A地的路程和貨車從A地出發(fā)了幾小時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)過點(-2,3)和(2,-1).
(1)求這個函數(shù)的解析式;
(2)在直角坐標(biāo)系內(nèi)畫出這個函數(shù)的圖象;
(3)當(dāng)0<x<4時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,已知矩形OABC點B的坐標(biāo)是(3,2),對角線AC所在直線為l,求直線l對應(yīng)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖已知直線L:y=
3
4
x+3,它與x軸、y軸的交點分別為A、B兩點.
(1)求點A、點B的坐標(biāo).
(2)設(shè)F為x軸上一動點,用尺規(guī)作圖作出⊙P,使⊙P經(jīng)過點B且與x軸相切于點F(不寫作法,保留作圖痕跡).
(3)設(shè)(2)中所作的⊙P的圓心坐標(biāo)為P(x,y),求y關(guān)于x的函數(shù)關(guān)系式.
(4)是否存在這樣的⊙P,既與x軸相切又與直線L相切于點B?若存在,求出圓心P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知等腰三角形周長為20,則底邊長y關(guān)于腰長x的函數(shù)圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小軍一家人假日開轎車從A地駛往B地去旅游,前一段路為普通公路,后一段路為高速公路,且高速公路路程是普通公路路程的2倍.已知汽車在普通公路上行駛的速度為60km/h,在高速公路上行駛的速度為100km/h,汽車從A地到B地一共行駛了2.2h.(兩段路程行駛過程均視為勻速行駛)
(1)求汽車行駛的兩段“路程”或“時間”;
(2)請你根據(jù)以上信息,寫出轎車所行路程s(km)與時間t(h)之間的函數(shù)關(guān)系式,并在平面直角坐標(biāo)系中畫出函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

齊齊哈爾至哈爾濱的高速公路長約300千米,甲、乙兩車同時分別從距齊齊哈爾240千米,60千米的入口進(jìn)入高速公路并正常行駛.甲車駛往齊齊哈爾、乙車駛往哈爾濱.甲車在行駛過程中速度始終不變,甲車離齊齊哈爾的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象如圖所示.
(1)求出甲車離齊齊哈爾的距離y(千米)與行駛時間x(時)之間的函數(shù)表達(dá)式;
(2)乙車若以60千米/時的速度勻速行駛,1小時后兩車相距多少千米?
(3)乙車按(2)中狀態(tài)行駛與甲車相遇后,速度改為a千米/時,結(jié)果兩車同時到達(dá)齊齊哈爾、哈爾濱,求乙車變化后的速度a;并在如圖所示的直角坐標(biāo)系中,畫出乙離齊齊哈爾的距離y(千米)與行駛時間x(時)之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

抗震救災(zāi)中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到具有較強(qiáng)抗震功能的A、B兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到A、B兩庫的路程和運(yùn)費(fèi)如下表:(表中“元/噸•千米”表示每噸糧食運(yùn)送1千米所需人民幣)
路程(千米)運(yùn)費(fèi)(元/噸•千米)
甲庫乙?guī)?/td>甲庫乙?guī)?/td>
A庫20151212
B庫2520108
(1)若甲庫運(yùn)往A庫糧食x噸,請寫出將糧食運(yùn)往A、B兩庫的總運(yùn)費(fèi)y(元)與x(噸)的函數(shù)關(guān)系式;
(2)當(dāng)甲、乙兩庫各運(yùn)往A、B兩庫多少噸糧食時,總運(yùn)費(fèi)最省,最省的總運(yùn)費(fèi)是多少?

查看答案和解析>>

同步練習(xí)冊答案