如圖,在平面直角坐標(biāo)系中,過(guò)格點(diǎn)A,B,C作一圓弧,點(diǎn)B與下列格點(diǎn)的連線(xiàn)中,能夠與該圓弧相切的是( )

A.點(diǎn)(0,3)
B.點(diǎn)(2,3)
C.點(diǎn)(5,1)
D.點(diǎn)(6,1)
【答案】分析:根據(jù)垂徑定理的性質(zhì)得出圓心所在位置,再根據(jù)切線(xiàn)的性質(zhì)得出,∠OBD+∠EBF=90°時(shí)F點(diǎn)的位置即可.
解答:解:連接AC,作AC的垂直平分線(xiàn)BH,交格點(diǎn)于點(diǎn)O,則點(diǎn)O就是所在圓的圓心,
∵過(guò)格點(diǎn)A,B,C作一圓弧,
∴三點(diǎn)組成的圓的圓心為:O(2,0),
∵只有∠OBD+∠EBF=90°時(shí),BF與圓相切,
∴當(dāng)△BOD≌△FBE時(shí),
∴EF=BD=2,
F點(diǎn)的坐標(biāo)為:(5,1),
∴點(diǎn)B與下列格點(diǎn)的連線(xiàn)中,能夠與該圓弧相切的是:(5,1).
故選:C.
點(diǎn)評(píng):此題主要考查了切線(xiàn)的性質(zhì)以及垂徑定理和坐標(biāo)與圖形的性質(zhì),得出△BOD≌△FBE時(shí),EF=BD=2,即得出F點(diǎn)的坐標(biāo)是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案