某商店購進一批單價為20元的日用商品,如果以單價30元銷售那么半月內(nèi)可售出400件,根據(jù)銷售經(jīng)驗,推廣銷售單價會導致銷售量的減少,即銷售單價每提高1元,銷售量相應減少20件.
(1)銷售單價提高多少元,可獲利4480元.
(2)如何提高售價,才能在半月內(nèi)獲得最大利潤?
(1)設銷售單價為x元時,可獲利4480元,
根據(jù)題意得出:4480=(x-20)[400-20(x-30)]
整理得出:4480=-20x2+1400x-20000,
即:x2-70x+1224=0,
解得:x1=34,x2=36,
34-30-4(元),36-30=6(元),
答:銷售單價提高4元或6元;

(2)設銷售單價為x元,銷售利潤為y元.
根據(jù)題意,得:
y=(x-20)[400-20(x-30)]
=(x-20)(1000-20x)
=-20x2+1400x-20000,
當x=-
1400
2×(-20)
=35時,
y最大=
4×(-20)×(-20000)-14002
4×(-20)
=4500,
這時,x-30=35-30=5.
所以,銷售單價提高5元,才能在半月內(nèi)獲得最大利潤4500元.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在學校田徑運動會上,九年級的一名高個子男生拋實心球,已知實心球所經(jīng)過的路線是某個二次函數(shù)圖象的一部分,如圖所示,如果這個男生的拋球處A點坐標為(0,2),實心球在空中線路的最高點B點的坐標是(6,5).
(1)求這個二次函數(shù)解析式;
(2)若拋出13.5米或大于13.5米遠為“好成績”,問該男生在這次拋擲中,能取得“好成績”嗎?試通過計算說明.(
15
≈3.873)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,梯形ABCD中,∠C=90°.動點E、F同時從點B出發(fā),點E沿折線BA-AD-DC運動到點C時停止運動,點F沿BC運動到點C時停止運動,它們運動時的速度都是1cm/s.設E、F出發(fā)ts時,△EBF的面積為ycm2.已知y與t的函數(shù)圖象如圖②所示,其中曲線OM為拋物線的一部分,MN、NP為線段.請根據(jù)圖中的信息,解答下列問題:
(1)梯形上底的長AD=______cm,梯形ABCD的面積______cm2
(2)當點E在BA、DC上運動時,分別求出y與t的函數(shù)關(guān)系式(注明自變量的取值范圍);
(3)當t為何值時,△EBF與梯形ABCD的面積之比為1:2?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,拋物線y1=a(x+2)2-3y2=
1
2
(x-3)2+1
交于點A(1,3)過點A作x軸的平行線,分別交兩條拋物線于點B、C,則以下結(jié)論:
①無論x取何值,y2的值總是正數(shù);②a=
2
3
;③當x=0時,y2-y1=4;④2AB=3AC;
其中,結(jié)論正確的是______(填寫序號即可)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),
C(2,0)三點.
(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.
求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某校課間操出操時樓梯口常出現(xiàn)擁擠現(xiàn)象,為詳細了解情況,九(1)班數(shù)學課題學習小組在樓梯口對前10分鐘出入人數(shù)進行了觀察記錄,并根據(jù)得到的數(shù)據(jù)繪制成下面兩幅圖:
(1)在2至5分鐘時,每分鐘出樓梯口的人數(shù)p(人)與時間t(分)的關(guān)系可以看作一次函數(shù),請你求出它的表達式.
(2)若把每分鐘到達樓梯口的人數(shù)y(人)與時間t(分)(2≤t≤8)的關(guān)系近似的看作二次函數(shù)y=-t2+12t+49,問第幾分鐘時到達樓梯口的人數(shù)最多?最多人數(shù)是多少?
(3)調(diào)查發(fā)現(xiàn),當樓梯口每分鐘增加的滯留人數(shù)達到24人時,就會出現(xiàn)安全隱患.請你根據(jù)以上有關(guān)部門信息分析是否存在安全隱患.若存在,求出存在隱患的時間段.若不存在,請說明理由.(每分鐘增加的滯留人數(shù)=每分鐘到達樓梯口的人數(shù)-每分鐘出樓梯樓的人數(shù))
(4)根據(jù)你分析的結(jié)果,對學校提一個合理化建議.(字數(shù)在40個以內(nèi))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,拋物線y=ax2+bx-2與x軸交于點A(-1,0)、B(4,0).點M、N在x軸上,點N在點M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設點M的橫坐標為m.
(1)求這條拋物線所對應的函數(shù)關(guān)系式.
(2)求點C在這條拋物線上時m的值.
(3)將線段CN繞點N逆時針旋轉(zhuǎn)90°后,得到對應線段DN.
①當點D在這條拋物線的對稱軸上時,求點D的坐標.
②以DN為直角邊作等腰直角三角形DNE,當點E在這條拋物線的對稱軸上時,直接寫出所有符合條件的m值.
(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點坐標為(-
b
2a
,
4ac-b2
4a
))

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商店經(jīng)營一批進價每件為2元的小商品,在市場營銷的過程中發(fā)現(xiàn):如果該商品按每件最低價3元銷售,日銷售量為18件,如果單價每提高1元,日銷售量就減少2件.設銷售單價為x(元),日銷售量為y(件).
(1)寫出日銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(2)設日銷售的毛利潤(毛利潤=銷售總額-總進價)為P(元),求出毛利潤P(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;
(3)在下圖所示的坐標系中畫出P關(guān)于x的函數(shù)圖象的草圖,并標出頂點的坐標;
(4)觀察圖象,說出當銷售單價為多少元時,日銷售的毛利潤最高是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O是坐標原點,點A、B的坐標分別為A(0,4)和B(-2,0),連接AB.
(1)現(xiàn)將△AOB繞點A按逆時針方向旋轉(zhuǎn)90°得到△AO1B1,請畫出△AO1B1,并直接寫出點B1、O1的坐標(注:不要求證明);
(2)求經(jīng)過B、A、O1三點的拋物線對應的函數(shù)關(guān)系式,并畫出拋物線的略圖.

查看答案和解析>>

同步練習冊答案