【題目】如圖,四邊形ABCD是平行四邊形,E為邊CD延長線上一點,連接BE交邊AD于點F.請找出一對相似三角形,并加以證明.

【答案】見解析.

【解析】

選擇ABF∽△DEF,根據(jù)四邊形ABCD是平行四邊形可知ABCD,再由平行線的性質(zhì)得出ABFE,AFDE,據(jù)此可得出結(jié)論.

解 選擇:ABF∽△DEF

理由:∵四邊形ABCD是平行四邊形,

ABCD.

∴∠ABF=∠E,∠A=∠FDE,

∴△ABF∽△DEF.

②選擇:EDF∽△ECB

理由:∵四邊形ABCD是平行四邊形,

ADBC.

∴∠C=∠FDE.

又∵∠E=∠E,

∴△EDF∽△ECB.

③選擇:ABF∽△CEB

理由:∵四邊形ABCD是平行四邊形,

ABCD,∠A=∠C.

∴∠ABF=∠E.

∴△ABF∽△CEB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+bx+cx軸相交于A、B兩點,點A在點B左側(cè),頂點在折線MPN上移動,它們的坐標(biāo)分別為M(﹣1,4)、P3,4)、N31).若在拋物線移動過程中,點A橫坐標(biāo)的最小值為﹣3,則ab+c的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=2x﹣4與反比例函數(shù)y=的圖象相交于點A(a,2),與x軸相交于點B.

(1)求a和k的值;

(2)以AB為邊作菱形ABCD,使點C在x軸正半軸上,點D在第一象限,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.

(1)請寫出這個反比例函數(shù)的解析式;

(2)蓄電池的電壓是多少?

(3)完成下表:

(4)如果以此蓄電池為電源的用電器的限制電流不能超過10 A,那么用電器可變電阻應(yīng)控制在什么范圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知△ABC,任取一點O,連接AO,BOCO,并取它們的中點D,E,F,得△DEF,則下列說法:①△ABC與△DEF是位似圖形;②△ABC與△DEF是相似圖形;③△ABC與△DEF的周長比為12;④△ABC與△DEF的面積比為41. 正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鈍角ABC中,AB5 cm,AC10 cm,動點DA點出發(fā)到B點止,動點EC點出發(fā)到A點止,點D運動的速度為1 cm/秒,點E運動的速度為2 cm/秒,如果兩點同時運動,那么當(dāng)以點AD、E為頂點的三角形與ABC相似時,運動的時間是(  )

A. 2.5

B. 4.5

C. 2.5秒或4.5

D. 2.5秒或4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB4,DAB上的一點(不與點A、B重合)DEBC,交AC于點E,則的最大值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船向正東方向航行,在A處測得燈塔PA的北偏東60°方向,航行40海里到達B處,此時測得燈塔PB的北偏東15°方向.

(1)求燈塔P到輪船航線的距離PD;(結(jié)果保留根號)

(2)當(dāng)輪船從B處繼續(xù)向東航行時,一艘快艇從燈塔P處同時前往D處,盡管快艇速度是輪船速度的2倍,但快艇還是比輪船晚15分鐘到達D處,求輪船每小時航行多少海里.(結(jié)果精確到1海里,參考數(shù)據(jù)≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,O是對角線ACBD的交點,MBC邊上的動點M不與B,C重合,,CNAB交于點N,連接OM,ON下列五個結(jié)論:;;;;,則的最小值是,其中正確結(jié)論的個數(shù)是  

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步練習(xí)冊答案