如圖,正方形ABCD中,點E是AD的中點,點P是AB上的動點,PE的延長線與CD的延長線交于點Q,過點E作EF⊥PQ交BC的延長線于點F.給出下列結(jié)論:
①△APE≌△DQE;
②點P在AB上總存在某個位置,使得△PQF為等邊三角形;
③若tan∠AEP=
2
3
,則
S△PBF
S△APE
=
14
3

其中正確的是(  )
A.①B.①③C.②③D.①②③

①∵四邊形ABCD是正方形
∴AB=BC=CD=QD,∠A=∠B=90°,
∵E為AD中點,
∴AE=ED.
在△AEP和△DFQ中
∠A=∠B
AE=DE
∠AEP=∠DEQ

∴△AEP≌△DFQ,故①正確;
②作EG⊥CD于G,EM⊥BC于M,
∴∠PGQ=∠EMF=90°.
∵EF⊥PQ,
∴∠PEF=90°,
即∠PEH+∠HEF=90°,
∵∠HPE+∠HEP=90°,
∴∠HPE=∠HEF,
∵四邊形ABCD是正方形,
∴PG=EM.
在△EFM和△PQG中
∠PGQ=∠EMF
PG=ME
∠HPE=∠HEF
,
∴△EFM≌△PQG,
∴EF=PQ,
∴在Rt△PEF中,PF>EF,
∴PF>PQ,
∴△PQF不能為等邊三角形,故②錯誤;
③∵△AEP≌△DFQ,
∴AE=ED,
∵tan∠AEP=
2
3
=
AP
AE
,設(shè)AP=2a,AE=3a,
∴ED=3a.
∴AD=6a.
∵∠AEP+∠DEF=90°,∠DEF+∠DRE=90°,
∴tan∠DRE=
2
3
=
DE
DR
,
∴DR=4.5a,
∴CR=1.5a.
∵∠CRF=∠DRE,
∴tan∠ERF=
2
3
=
CF
CR

∴CF=a.
∴BF=7a,BP=4a,
∴S△APE=
1
2
(2a.3a)=3a,S△PBF=
1
2
(4a.7a)=14a,
S△PBF
S△APE
=
14
3
,故③正確.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,邊長為1的正方形ABCD中,點E是對角線BD上的一點,且BE=BC,點P在EC上,PM⊥BD于M,PN⊥BC于N,則PM+PN=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD中,在AD的延長線上取點E,F(xiàn),使DE=AD,DF=BD,連接BF分別交CD,CE于H,G.下列結(jié)論:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四邊形DHGE;④圖中有8個等腰三角形.其中正確的共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

四邊形ABCD的對角線AC、BD相交于點O,能判定它是正方形的條件是( 。
A.OA=OB=OC=OD、AC⊥BDB.OA=OB=OC=OD
C.OA=OC、OB=OC、AC⊥BDD.OA=OC、OB=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方形ABCD的邊長是4,對角線AC、BD交于點O,點E在線段AC上,且OE=
2
3
6
,則∠ABE的度數(shù)______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.求證:
①△ABG≌△AFG;
②BG=GC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是邊長為2的正方形,點G是BC延長線上一點,連接AG,點E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在正方形ABCD中,點P是CD上一動點,連接PA,分別過點B,D作BE⊥PA,DF⊥PA,垂足分別為E,F(xiàn).
(1)求證:BE-DF=EF;
(2)如圖②,若點P在DC的延長線上,其余條件不變,則BE,DF,EF有怎樣的數(shù)量關(guān)系______(不用證明)
(3)如圖③,若點P在CD的延長線上,其余條件不變,畫出圖形,寫出此時BE,DF,EF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形OABC的邊長為1,點P在AB上,∠AOP=30°,OP的延長線交CB的延長線于點Q,求PA和BQ的長.

查看答案和解析>>

同步練習(xí)冊答案