如圖,四邊形ABCD是邊長為2的正方形,點G是BC延長線上一點,連接AG,點E、F分別在AG上,連接BE、DF,∠1=∠2,∠3=∠4.
(1)證明:△ABE≌△DAF;
(2)若∠AGB=30°,求EF的長.
(1)證明:∵四邊形ABCD是正方形,
∴AD=AB,
∵∠1=∠2,∠3=∠4,
∴△ABE≌△DAF.

(2)∵四邊形ABCD是正方形,∠AGB=30°,
∴ADBC,
∴∠1=∠AGB=30°,
∵∠1+∠4=∠DAB=90°,
∵∠3=∠4,
∴∠1+∠3=90°,
∴∠AFD=180°-(∠1+∠3)=90°,
∴DF⊥AG,
∴DF=
1
2
AD=1,
∴AF=
3
,
∵△ABE≌△DAF,
∴AE=DF=1,
∴EF=
3
-1.
故所求EF的長為
3
-1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

命題:如圖1,已知正方形ABCD的對角線AC、BD相交于點O,E是AC上一點,過點A作AG⊥EB,垂足為G,AG交BD于點F,則OE=OF.
對上述命題證明如下:
∵四邊形ABCD是正方形,
∴∠BOE=∠AOF=90°,BO=AO.
又∵AG⊥EB,
∴∠1+∠3=90°=∠2+∠3.
∴∠1=∠2
∴Rt△BOE≌Rt△AOF.
∴OE=OF
問題:對上述命題,若點E在AC的延長線上,AG⊥EB,交EB的延長線于點G,AG的延長線交DB的延長線于點F,其它條件不變(如圖2),則結論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明現(xiàn)由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,將邊長都為1cm的正方形按如圖所示擺放,點A1、A2、A3、A4分別是正方形的中心,則前5個這樣的正方形重疊部分的面積和為( 。
A.
1
4
B.
1
2
C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,正方形ABCD中,點E是AD的中點,點P是AB上的動點,PE的延長線與CD的延長線交于點Q,過點E作EF⊥PQ交BC的延長線于點F.給出下列結論:
①△APE≌△DQE;
②點P在AB上總存在某個位置,使得△PQF為等邊三角形;
③若tan∠AEP=
2
3
,則
S△PBF
S△APE
=
14
3

其中正確的是( 。
A.①B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,正方形ABCD邊長為4,點P在邊AD上,且PE⊥AC,PF⊥BD,垂足分別為E、F,則PE+PF的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在邊長為2的正方形ABCD中,M為邊AD的中點,延長MD至點E,使ME=MC,以DE為邊作正方形DEFG,點G在邊CD上,則DG的長為( 。
A.
3
-1
B.3-
5
C.
5
+1
D.
5
-1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,DBAC,且DB=
1
2
AC,E是AC的中點,
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加一個什么條件,為什么?
(3)在(2)的條件下,若要使四邊形DBEA是正方形,則∠C=______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

正方形的邊長為a,則它的對角線的交點到邊的距離為( 。
A.
1
2
a
B.
1
3
a
C.
2
2
a
D.
2
4
a

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在正方形ABCD中,E、F分別是CB、CD延長線上的點,若EF=BE+DF,求證:∠EAF=135°.

查看答案和解析>>

同步練習冊答案