【題目】如圖,拋物線y=ax+bx+c與x軸的兩個交點為B(1,0)和C,與y軸的交點坐標為(0,-1.5)且此拋物線過點A(3,6).
(1)求此二次函數(shù)的解析式;
(2)設此拋物線的頂點為P,對稱軸與線段AC相交于點Q,求點P和點Q的坐標.
【答案】(1)拋物線的解析式為;(2)Q點的坐標為(-1,2), P的坐標為:(1,2).
【解析】
(1)將A、B和(0,-1.5)代入二次函數(shù)y=ax+bx+c,聯(lián)立方程組求出a、b、c即可得出函數(shù)解析式;
(2)由二次函數(shù)一般式可得函數(shù)頂點式從而求出二次函數(shù)的頂點坐標及對稱軸方程,根據(jù)A,C兩點的坐標可求出線段AC所在直線的表達式,由對稱軸可得Q點橫坐標,將x=1代入即可求出Q點縱坐標.
解:(1)根據(jù)題意把(1,0),(0,-1.5)和(3,6)代入y=ax+bx+c中得
解得故此函數(shù)解析式為.
(2)由.
∴拋物線頂點P的坐標為:(1,2),對稱軸方程為:x=1.
設直線AC的方程為:y=k1x+b1.
∵A(3,6),C(3,0),
∴在該直線上,
解得,
直線AC的方程為:y=x+3
將x=1代入y=x+3得y=2,
∴Q點坐標為(1,2).
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在平面直角坐標系x Oy中,直線y=2x+4與y軸交于點A,與x軸交于點B,拋物線C1:y=x2+bx+c過A,B兩點,與x軸的另一交點為點C.
(1)求拋物線C1的解析式及點C的坐標;
(2)如圖(2),作拋物線C2,使得拋物線C2與C1恰好關于原點對稱,C2與C1在第一象限內(nèi)交于點D,連接AD,CD,請直接寫出拋物線C2的解析式和點D的坐標.
(3)已知拋物線C2的頂點為M,設P為拋物線C1對稱軸上一點,Q為直線y=2x+4上一點,是否存在以點M,Q,P,B為頂點的四邊形為平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】佳佳文具店購進A,B兩種款式的筆袋,其中A種筆袋的單價比B種袋的單價低10%.已知店主購進A種筆袋用了810元,購進B種筆袋用了600元,且所購進的A種筆袋的數(shù)量比B種筆袋多20個.請問:文具店購進A,B兩種款式的筆袋各多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4 經(jīng)過點A(﹣3,0),點 B 在拋物線上,CB∥x軸,且AB 平分∠CAO.則此拋物線的解析式是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+2x+k+1與x軸交與A、B兩點,與y軸交與點C(0,-3).
(1)求拋物線的對稱軸及k的值;
(2)求拋物線的對稱軸上存在一點P,使得PA+PC的值最小,求此時點P的坐標;
(3)點M是拋物線上的一動點,且在第三象限.
①當M點運動到何處時,△AMB的面積最大?求出△AMB的最大面積及此時點M的坐標.
②當M點運動到何處時,四邊形AMCB的面積最大?求出四邊形AMCB的最大面積及此時點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的面積為3,BD:DC=2:1,E是AC的中點,AD與BE相交于點P,那么四邊形PDCE的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為一橋洞的形狀,其正視圖是由圓弧和矩形ABCD構成.O點為所在⊙O的圓心,點O又恰好在AB為水面處.若橋洞跨度CD為8米,拱高(OE⊥弦CD于點F)EF為2米.
(1)求所在⊙O的半徑DO;
(2)若河里行駛來一艘正視圖為矩形的船,其寬6米,露出水面AB的高度為h米,求船能通過橋洞時的最大高度h.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】冬天來了,曬衣服成了頭疼的事情,聰明的小華想到一個好辦法,在家后院地面(BD)上立兩根等長的立柱AB、CD(均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線y=ax2-0.8x+c,如圖1,已知立柱AB=CD=2.6米,BD=8米.
(1)求繩子最低點離地面的距離;
(2)為了防止衣服碰到地面,小華在離AB為3米的位置處用一根垂直于地面的立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.6米,求MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com