精英家教網(wǎng)某校的校園內(nèi)有一塊尺寸如圖所示的三角形空地,現(xiàn)計(jì)劃將這塊空地建成一個(gè)花園.已知每平方米的造價(jià)為30元.則學(xué)校建這個(gè)花園需要投資(
2
≈1.414
3≈1.732
)( 。
A、7794元
B、7820元
C、7822元
D、7921元
分析:作BH⊥CA于H,根據(jù)鄰補(bǔ)角得到∠BAH=60°,在Rt△BAH中,根據(jù)∠BAH的正弦可計(jì)算出BH=10
3
,再計(jì)算S△ABC=150
3
≈259.8(每平方米),然后用面積乘以單價(jià)即可得到學(xué)校建這個(gè)花園需要的投資額.
解答:精英家教網(wǎng)解:作BH⊥CA于H,如圖,
∵∠BAC=120°,
∴∠BAH=60°,
在Rt△BAH中,sin∠BAH=
BH
AB
,
∴BH=ABsin60°=20×
3
2
=10
3

∴S△ABC=
1
2
BH•AC=
1
2
×10
3
×30=150
3
≈150×1.732=259.8(每平方米)
∴學(xué)校建這個(gè)花園需要投資額=30×259.8=7794(元).
故選A.
點(diǎn)評(píng):本題考查了二次根式的應(yīng)用:二次根式的應(yīng)用主要是在解決實(shí)際問(wèn)題的過(guò)程中用到有關(guān)二次根式的概念、性質(zhì)和運(yùn)算的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,某學(xué)校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,精英家教網(wǎng)BC=80m,CD=40m,現(xiàn)計(jì)劃在上面建設(shè)一個(gè)面積為S的矩形綜合樓PMBN,其中點(diǎn)P在線段AD上,且PM的長(zhǎng)至少為36m.
(1)求邊AD的長(zhǎng);
(2)設(shè)PA=x(m),求S關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長(zhǎng).(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(48):2.7 最大面積是多少(解析版) 題型:解答題

如圖,某學(xué)校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計(jì)劃在上面建設(shè)一個(gè)面積為S的矩形綜合樓PMBN,其中點(diǎn)P在線段AD上,且PM的長(zhǎng)至少為36m.
(1)求邊AD的長(zhǎng);
(2)設(shè)PA=x(m),求S關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長(zhǎng).(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(51):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,某學(xué)校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計(jì)劃在上面建設(shè)一個(gè)面積為S的矩形綜合樓PMBN,其中點(diǎn)P在線段AD上,且PM的長(zhǎng)至少為36m.
(1)求邊AD的長(zhǎng);
(2)設(shè)PA=x(m),求S關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長(zhǎng).(精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(52):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,某學(xué)校校園內(nèi)有一塊形狀為直角梯形的空地ABCD,其中AB∥DC,∠B=90°,AB=100m,BC=80m,CD=40m,現(xiàn)計(jì)劃在上面建設(shè)一個(gè)面積為S的矩形綜合樓PMBN,其中點(diǎn)P在線段AD上,且PM的長(zhǎng)至少為36m.
(1)求邊AD的長(zhǎng);
(2)設(shè)PA=x(m),求S關(guān)于x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;
(3)若S=3300m2,求PA的長(zhǎng).(精確到0.1m)

查看答案和解析>>

同步練習(xí)冊(cè)答案