已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值=.
考點:
軸對稱-最短路線問題;菱形的性質.
分析:
作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出OC、OB,根據勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.
解答:
解:
作M關于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,
∵四邊形ABCD是菱形,
∴AC⊥BD,∠QBP=∠MBP,
即Q在AB上,
∵MQ⊥BD,
∴AC∥MQ,
∵M為BC中點,
∴Q為AB中點,
∵N為CD中點,四邊形ABCD是菱形,
∴BQ∥CD,BQ=CN,
∴四邊形BQNC是平行四邊形,
∴NQ=BC,
∵四邊形ABCD是菱形,
∴CO=AC=3,BO=BD=4,
在Rt△BOC中,由勾股定理得:BC=5,
即NQ=5,
∴MP+NP=QP+NP=QN=5,
故答案為:5.
點評:
本題考查了軸對稱﹣最短路線問題,平行四邊形的性質和判定,菱形的性質,勾股定理的應用,解此題的關鍵是能根據軸對稱找出P的位置.
科目:初中數學 來源: 題型:
A、165° | B、150° | C、135° | D、120° |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com