【題目】把多項式﹣2x+1﹣x3+x2按字母x升冪排列為:

【答案】1﹣2x+x2﹣x3
【解析】解:把多項式﹣2x+1﹣x3+x2按字母x升冪排列為:1﹣2x+x2﹣x3
所以答案是:1﹣2x+x2﹣x3
【考點精析】關(guān)于本題考查的多項式,需要了解幾個單項式的和叫多項式才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】當代數(shù)式2x23+x的值相等時,x_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形一定具有的性質(zhì)是(

A.內(nèi)角和為180°B.是中心對稱圖形

C.鄰邊相等D.對角互補

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店因換季將某種服裝打折銷售,如果每件服裝按標價的5折出售將虧20元,而按標價的8折出售將賺40元,設(shè)每件服裝的標價是x元,則可列方程為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,正方形A1B1C1D1 D1E1E2B2 、A2B2C2D2 、D2E3E4B3 、A3B3C3D3 ……按如圖所示的方式放置,其中點B1y軸上,點C1、E1、E2、C2、E3E4、C3……在x軸上,已知正方形A1B1C1D1 的邊長為1,∠B1C1O=60°,B1C1B2C2B3C3……則正方形A2017B2017C2017D2017的邊長是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,把一張長10厘米、寬6厘米的長方形紙板分成兩個相同的直角三角形.

(1)甲三角形(如圖2)旋轉(zhuǎn)一周,可以形成一個怎樣的幾何體?它的體積是多少立方米?

(2)乙三角形(如圖3)旋轉(zhuǎn)一周,可以形成一個怎樣的幾何體?它的體積是多少立方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,圖①為一個正方體,其棱長為10,圖②為圖①的表面展開圖(數(shù)字和字母寫在外表面上,字母也可以表示數(shù)),請根據(jù)要求回答問題:

(1)如果正方體相對面上的兩個數(shù)字之和相等,則x________y________

(2)如果面“2”是右面,面“4”在后面,則上面是________(“6”“10”“x”“y”);

(3)圖①中,M,N為所在棱的中點,試在圖②中找出點M,N的位置,并求出圖②中三角形ABM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【問題提出】已知∠AOB=70°,∠AOD=∠AOC,∠BOD=3∠BOC(∠BOC<45°),求∠BOC的度數(shù).

【問題思考】聰明的小明用分類討論的方法解決.

(1)當射線OC在∠AOB的內(nèi)部時,①若射線OD在∠AOC內(nèi)部,如圖1,可求∠BOC的度數(shù),解答過程如下:

設(shè)∠BOC=α,∴∠BOD=3∠BOC=3α,∴∠COD=∠BOD﹣∠BOC=2α,∴∠AOD=∠AOC,

∴∠AOD=∠COD=2α,∴∠AOB=∠AOD+∠BOD=2α+3α=5α=70°,∴α=14°,∴∠BOC=14°

問:當射線OC在∠AOB的內(nèi)部時,②若射線OD在∠AOB外部,如圖2,請你求出∠BOC的度數(shù);

【問題延伸】(2)當射線OC在∠AOB的外部時,請你畫出圖形,并求∠BOC的度數(shù).

【問題解決】綜上所述:∠BOC的度數(shù)分別是   

查看答案和解析>>

同步練習冊答案