解:(1)作斜邊AC的中線BO,
∵△ABC中,AB=BC=4,∠ABC=90°,
∴△ABC是等腰直角三角形,
∴BO⊥BC,且BO=OC=AO,∠A=∠C=45°,
∵ED⊥AC,
∴∠EDC=∠OBC=OBA∠=45°,
∵PB=PD,
∴∠PDB=∠PBD=45°+∠PBO=45°+∠DPC,
∴∠PBO=∠DPC
∵ED⊥AC,
∴Rt△BOP≌Rt△PDE,
∴BO=PE,
∴PE=OC=AO,
∴PE=
,
(2)作斜邊AC的中線BO,
∵△ABC中,AB=BC=4,∠ABC=90°,
∴△ABC是等腰直角三角形,
∴BO⊥BC,且BO=OC=AO,
∵AE⊥DE,
∴∠OBC=∠OCB=∠DCE=∠CDE=45°,
∵PD=PB,
∴∠PDC=∠CBD,
∵∠DPE=∠DCE+∠PDC,∠OBP=∠OBC+∠CBP,
∴∠DPE=∠OBP,
∴△OPB≌△EDP,
∴OB=PE,
∴PE=OA=OC,
∴PE=
,
(3)如(1)中的圖,作斜邊AC的中線BO,
∵等腰直角三角形ABC,AB=BC=4,
∴OB=OC=OA=2
,
∵AP=1,
∴OP=2
-1,
∵Rt△BOP≌Rt△PDE,
∵ED⊥AC,
∴∠EDC=∠OBC=OBA∠=45°,
∴△DCE為等腰直角三角形,
∴PE=OB=2
,DE=CE=OP=
,
∵S
四邊形PBDE=S
△BPO+S
△BOC-S
△CDE
=
=
.
故答案為PE=
,
.
分析:(1)作斜邊AC的中線BO,即可推出BO⊥BC,且BO=OC=AO,然后通過求證△POB≌△DEP,推出PE=BO,即可推出PE與AC的數(shù)量關(guān)系,(2)依然成立,通過求證△OPB≌△EDP即可推出結(jié)論,(3)做作斜邊AC的中線BO,根據(jù)(1)所推出的結(jié)論,即可得:PE=OB=2
,DE=CE=OP=
,通過S
四邊形PBDE=S
△BPO+S
△BOC-S
△CDE,即可推出S
四邊形PBDE的值.
點評:本題主要考查全等三角形的判定與性質(zhì)、等腰直角三角形的性質(zhì)、等腰直角三角形斜邊上的中線的性質(zhì)、三角形的面積公式等知識點,關(guān)鍵在于根據(jù)題意推出△OPB和△EDP全等及相關(guān)邊的長度.