已知∠1∠2是直線l1、l2l3所截得的同旁內(nèi)角,如果l1∥l2,結(jié)論正確的是 (   )

A.∠1=∠2             B.∠1+∠2=90°

C.∠1+∠2=90°         D.∠1是鈍角,∠2是銳角

 

答案:C
提示:

平行直線的同旁內(nèi)角和為180

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC和△DEF是兩個(gè)邊長都為10cm的等邊三角形,且B、D、C、E都在同一直線精英家教網(wǎng)上,連接AD、CF.若BD=3cm,△ABC沿著BE的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,
(1)當(dāng)t為何值時(shí),四邊形ADFC是菱形?請(qǐng)說明你的理由.
(2)四邊形ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC和△DEF是兩個(gè)邊長都為10cm的等邊三角形,且B、D、C、E都在同一直線上精英家教網(wǎng),連接AD、CF.
(1)求證:四邊形ADFC是平行四邊形;
(2)若BD=3cm,△ABC沿著BE的方向以每秒1cm的速度運(yùn)動(dòng),設(shè)△ABC運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)t為何值時(shí),?ADFC是菱形?請(qǐng)說明你的理由;
②?ADFC有可能是矩形嗎?若可能,求出t的值及此矩形的面積;若不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、有這樣一道習(xí)題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長線交⊙O于Q,過Q點(diǎn)作⊙O的切線交OA的延長線于R.說明:RP=RQ.
請(qǐng)?zhí)骄肯铝凶兓?BR>變化一:交換題設(shè)與結(jié)論.
已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長線交⊙O于Q,R是OA的延長線上一點(diǎn),且RP=RQ.
求證:RQ為⊙O的切線.
變化二:運(yùn)動(dòng)探究:
(1)如圖2,若OA向上平移,變化一中的結(jié)論還成立嗎?(只需交待判斷)
(2)如圖3,如果P在OA的延長線上時(shí),BP交⊙O于Q,過點(diǎn)Q作⊙O的切線交OA的延長線于R,原題中的結(jié)論還成立嗎?為什么?
(3)若OA所在的直線向上平移且與⊙O無公共點(diǎn),請(qǐng)你根據(jù)原題中的條件完成圖4,并判斷結(jié)論是否還成立?(只需交待判斷)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知A,B兩點(diǎn)是直線AB與x軸的正半軸,y軸的正半軸的交點(diǎn),且OA,OB的長分別是x2-14x+48=0的兩個(gè)根(OA>OB),射線BC平分∠ABO交x軸于C點(diǎn),若有一動(dòng)點(diǎn)P以每秒1個(gè)單位的速度從B點(diǎn)開始沿射線BC移動(dòng),運(yùn)動(dòng)時(shí)間為t秒
(1)設(shè)△APB和△OPB的面積分別為S1,S2,求S1:S2;
(2)求直線BC的解析式;
(3)在點(diǎn)P的運(yùn)動(dòng)過程中,△OPB可能是等腰三角形嗎?若可能,求出時(shí)間t;若不可能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案